Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-513760

RESUMO

Despite the vast increase in research activity in the coronavirus field over the past two years, researchers are still heavily reliant on non-human cells, for example Vero E6, highly heterogeneous or not fully differentiated cells, such as Calu-3, or not naturally susceptible cell lines overexpressing receptor ACE2 and other accessory factors, such as TMPRSS2. Complex cell models, such as primary cell-derived air-liquid interface epithelial models are highly representative of human tissues but are expensive and time-consuming to develop and maintain and have limited suitability for high-throughput analysis. In vitro investigations of host-pathogen interactions of viruses is highly reliant on suitable cell and tissue culture models and results are only as good as the model they have been validated in. Here, we show the use of a highly characterized human kidney cell line, Caki-1, for infection with three human coronaviruses: Betacoronaviruses severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV) and Alphacoronavirus human coronavirus 229E (hCoV-229E). Caki-1 cells show equal or superior susceptibility to all three coronaviruses when compared to other commonly used cells lines for the cultivation of the respective virus. Furthermore, we used a panel of antibodies generated against 21 SARS-CoV-2-encoded proteins to identify their location in the infected Caki-1 cells using immunocytochemistry. Most importantly, Caki-1 cells are also susceptible to two other respiratory viruses, Influenza A virus and RSV, making them an ideal model for cross-comparison of not only a broad range of coronaviruses but respiratory viruses in general.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-470550

RESUMO

An enormous global effort is being made to study SARS-CoV-2 and develop safe and effective treatments. Studying the entire virus replication cycle of SARS-CoV-2 is essential to identify host factors and treatments to combat the infection. However, quantification of released virus often requires lengthy procedures, such as endpoint dilution assays or reinfection with engineered reporter viruses. Quantification of viral RNA in cell supernatant is faster and can be performed on clinical isolates. However, viral RNA purification is expensive in time and resources and often unsuitable for high-throughput screening. Here, we show a direct lysis RT-qPCR method allowing sensitive, accurate, fast, and cheap quantification of SARS-CoV-2 in culture supernatant. During lysis, the virus is completely inactivated, allowing further processing in low containment areas. This protocol facilitates a wide array of high- and low-throughput applications from basic quantification to studying the biology of SARS-CoV-2 and to identify novel antiviral treatments in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...