Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 20(11): 2757-67, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11387209

RESUMO

Mitogen-activated protein kinase (MAPK) pathways couple intrinsic and extrinsic signals to hypertrophic growth of cardiomyocytes. The MAPK kinase MEK5 activates the MAPK ERK5. To investigate the potential involvement of MEK5-ERK5 in cardiac hypertrophy, we expressed constitutively active and dominant-negative forms of MEK5 in cardiomyocytes in vitro. MEK5 induced a form of hypertrophy in which cardiomyocytes acquired an elongated morphology and sarcomeres were assembled in a serial manner. The cytokine leukemia inhibitory factor (LIF), which stimulates MEK5 activity, evoked a similar response. Moreover, a dominant-negative MEK5 mutant specifically blocked LIF-induced elongation of cardiomyocytes and reduced expression of fetal cardiac genes without blocking other aspects of LIF-induced hypertrophy. Consistent with the ability of MEK5 to induce serial assembly of sarcomeres in vitro, cardiac-specific expression of activated MEK5 in transgenic mice resulted in eccentric cardiac hypertrophy that progressed to dilated cardiomyopathy and sudden death. These findings reveal a specific role for MEK5-ERK5 in the induction of eccentric cardiac hypertrophy and in transduction of cytokine signals that regulate serial sarcomere assembly.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Coração/fisiopatologia , Interleucina-6 , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/enzimologia , Sarcômeros/fisiologia , Animais , Animais Recém-Nascidos , Apoptose , Células COS , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Células Cultivadas , Chlorocebus aethiops , Ativação Enzimática , Inibidores do Crescimento/farmacologia , Ventrículos do Coração , Humanos , Fator Inibidor de Leucemia , Linfocinas/farmacologia , MAP Quinase Quinase 5 , Camundongos , Camundongos Transgênicos , Proteína Quinase 7 Ativada por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Miocárdio/citologia , Miocárdio/patologia , Ratos , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Transfecção
2.
Proc Natl Acad Sci U S A ; 98(6): 3328-33, 2001 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11248078

RESUMO

Signaling events controlled by calcineurin promote cardiac hypertrophy, but the degree to which such pathways are required to transduce the effects of various hypertrophic stimuli remains uncertain. In particular, the administration of immunosuppressive drugs that inhibit calcineurin has inconsistent effects in blocking cardiac hypertrophy in various animal models. As an alternative approach to inhibiting calcineurin in the hearts of intact animals, transgenic mice were engineered to overexpress a human cDNA encoding the calcineurin-binding protein, myocyte-enriched calcineurin-interacting protein-1 (hMCIP1) under control of the cardiac-specific, alpha-myosin heavy chain promoter (alpha-MHC). In unstressed mice, forced expression of hMCIP1 resulted in a 5-10% decline in cardiac mass relative to wild-type littermates, but otherwise produced no apparent structural or functional abnormalities. However, cardiac-specific expression of hMCIP1 inhibited cardiac hypertrophy, reinduction of fetal gene expression, and progression to dilated cardiomyopathy that otherwise result from expression of a constitutively active form of calcineurin. Expression of the hMCIP1 transgene also inhibited hypertrophic responses to beta-adrenergic receptor stimulation or exercise training. These results demonstrate that levels of hMCIP1 producing no apparent deleterious effects in cells of the normal heart are sufficient to inhibit several forms of cardiac hypertrophy, and suggest an important role for calcineurin signaling in diverse forms of cardiac hypertrophy. The future development of measures to increase expression or activity of MCIP proteins selectively within the heart may have clinical value for prevention of heart failure.


Assuntos
Inibidores de Calcineurina , Cardiomiopatia Dilatada/prevenção & controle , Proteínas Musculares/fisiologia , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Proteínas de Ligação a DNA , Feminino , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Genéticos , Proteínas Musculares/genética , Cadeias Pesadas de Miosina/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia
3.
J Clin Invest ; 105(10): 1395-406, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10811847

RESUMO

Hypertrophic growth is an adaptive response of the heart to diverse pathological stimuli and is characterized by cardiomyocyte enlargement, sarcomere assembly, and activation of a fetal program of cardiac gene expression. A variety of Ca(2+)-dependent signal transduction pathways have been implicated in cardiac hypertrophy, but whether these pathways are independent or interdependent and whether there is specificity among them are unclear. Previously, we showed that activation of the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin or its target transcription factor NFAT3 was sufficient to evoke myocardial hypertrophy in vivo. Here, we show that activated Ca(2+)/calmodulin-dependent protein kinases-I and -IV (CaMKI and CaMKIV) also induce hypertrophic responses in cardiomyocytes in vitro and that CaMKIV overexpressing mice develop cardiac hypertrophy with increased left ventricular end-diastolic diameter and decreased fractional shortening. Crossing this transgenic line with mice expressing a constitutively activated form of NFAT3 revealed synergy between these signaling pathways. We further show that CaMKIV activates the transcription factor MEF2 through a posttranslational mechanism in the hypertrophic heart in vivo. Activated calcineurin is a less efficient activator of MEF2-dependent transcription, suggesting that the calcineurin/NFAT and CaMK/MEF2 pathways act in parallel. These findings identify MEF2 as a downstream target for CaMK signaling in the hypertrophic heart and suggest that the CaMK and calcineurin pathways preferentially target different transcription factors to induce cardiac hypertrophy.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares , Fatores de Transcrição/metabolismo , Animais , Fator Natriurético Atrial/genética , Calcineurina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Cardiomegalia/genética , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Fatores de Regulação Miogênica , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição NFATC , Regiões Promotoras Genéticas , Ratos , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 97(8): 4070-5, 2000 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-10737771

RESUMO

Myocyte enhancer factor-2 (MEF2) transcription factors control muscle-specific and growth factor-inducible genes. We show that hypertrophic growth of cardiomyocytes in response to phenylephrine and serum is accompanied by activation of MEF2 through a posttranslational mechanism mediated by calcium, calmodulin-dependent protein kinase (CaMK), and mitogen-activated protein kinase (MAPK) signaling. CaMK stimulates MEF2 activity by dissociating class II histone deacetylases (HDACs) from the DNA-binding domain. MAPKs, which activate MEF2 by phosphorylation of the transcription activation domain, maximally stimulate MEF2 activity only when repression by HDACs is relieved by CaMK signaling to the DNA-binding domain. These findings identify MEF2 as an endpoint for hypertrophic stimuli in cardiomyocytes and demonstrate that MEF2 mediates synergistic transcriptional responses to the CaMK and MAPK signaling pathways by signal-dependent dissociation from HDACs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Fatores de Transcrição MEF2 , Camundongos , Fatores de Regulação Miogênica , Ratos , Transcrição Gênica
5.
Annu Rev Genomics Hum Genet ; 1: 179-223, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11701629

RESUMO

The identification of genetic mutations underlying familial structural heart disease has provided exciting new insights into how alterations in structural components of the cardiomyocyte lead to different forms of cardiomyopathy. Specifically, mutations in components of the sarcomere are frequently associated with hypertrophic cardiomyopathy, whereas mutations in cytoskeletal proteins lead to dilated cardiomyopathy. In addition, extrinsic stresses such as hypertension and valvular disease can produce myocardial remodeling that is very similar to that observed in genetic cardiomyopathy. For myocardial remodeling to occur, changes in gene expression must occur; therefore, changes in contractile function or wall stress must be communicated to the nucleus via signal transduction pathways. The identity of these signaling pathways has become a key question in molecular biology. Numerous signaling molecules have been implicated in the development of hypertrophy and failure, including the beta-adrenergic receptor, G alpha(q) and downstream effectors, mitogen-activated protein kinase pathways, and the Ca(2+)-regulated phosphatase, calcineurin. In the past it has been difficult to discern which signaling molecules actually contributed to disease progression in vivo; however, the development of numerous transgenic and knockout mouse models of cardiomyopathy is now allowing the direct testing of stimulatory and inhibitory molecules in the mouse heart. From this work it has been possible to identify signaling molecules and pathways that are required for different aspects of disease progression in vivo. In particular, a number of signaling pathways have now been identified that may be key regulators of changes in myocardial structure and function in response to mutations in structural components of the cardiomyocyte. Myocardial structure and signal transduction are now merging into a common field of research that will lead to a more complete understanding of the molecular mechanisms that underly heart disease.


Assuntos
Cardiomiopatias/genética , Animais , Apoptose , Sinalização do Cálcio , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica Familiar/genética , Núcleo Celular/fisiologia , Sobrevivência Celular , Proteínas de Ligação ao GTP/fisiologia , Expressão Gênica , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteína Quinase C/fisiologia , Receptores de Superfície Celular/fisiologia , Sarcômeros/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...