Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Spine Surg ; 18(S1): S24-S31, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39187299

RESUMO

BACKGROUND: Emerging data have highlighted the significance of planning and aligning total and segmental lumbar lordosis with pelvic morphology when performing short-segment fusion with the goal of reducing the risk of adjacent segment disease while also decreasing spine-related disability. This study evaluates the impact of personalized interbody implants in restoring pelvic incidence-lumbar lordosis (PI-LL) mismatch compared with a similar study using stock interbody implants. METHODS: This multicenter retrospective analysis assessed radiographic pre- and postoperative spinopelvic alignment (PI-LL) in patients who underwent 1- or 2-level lumbar fusions with personalized interbody implants for degenerative (nondeformity) indications. The aim was to assess the incidence of malalignment (PI-LL ≥ 10°) both before and after fusion surgery and to determine the rate of alignment preservation and/or correction in this population. RESULTS: There were 135 patients included in this study. Of 83 patients who were aligned preoperatively, alignment was preserved in 76 (91.6%) and worsened in 7 (8.4%). Among the 52 preoperatively malaligned patients, alignment was restored in 23 (44.2%), and 29 (55.8%) were not fully corrected. Among patients who were preoperatively aligned, there was no statistically significant difference in either the "preserved" or "worsened" groups between stock devices and personalized interbody devices. In contrast, among patients who were preoperatively malaligned, there was a statistically significant increase in the "restored" group (P = 0.046) and a statistically significant decrease in the "worsened" groups in patients with personalized interbodies compared with historical stock device data (P < 0.05). CONCLUSIONS: Compared with a historical cohort with stock implants, personalized interbody implants in short-segment fusions have shown a statistically significant improvement in restoring patients to normative PI-LL. Using 3-dimensional preoperative planning combined with personalized implants provides an important tool for planning and achieving improvement in spinopelvic parameters.

2.
Int J Spine Surg ; 18(S1): S32-S40, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39187298

RESUMO

BACKGROUND: An abnormal postoperative lordosis distribution index (LDI), which quantifies the ratio between the lordosis at L4 to S1 and the lordosis at L1 to S1, contributes to the development of adjacent segment disease and increased revision rates in patients undergoing short-segment lumbar intervertebral fusions. Incorporating preoperative spinopelvic parameters and LDI into the surgical plan for short-segment fusion is important for guiding alignment restoration and preserving normal preoperative alignment in unfused segments. This study examined changes in LDI, segmental lordosis, and lordosis of the unfused levels in patients treated with personalized interbody cage (PIC) implants. METHODS: This retrospective study evaluated radiographic measurements from 111 consecutively treated patients diagnosed with degenerative spinal conditions and treated with a short-segment fusion of L4 to L5, L5 to S1, or L4 to S1 using PIC implant(s) within 6 months of the fusion procedure. Comparisons of intervertebral lordosis for treated and untreated levels as well as LDI pre- and postoperatively were performed. RESULTS: In patients with a preoperative hypolordotic distribution (LDI < 50%), statistically significant increases were found in LDI postoperatively, approaching the normal LDI range (LDI 50%-80%). Likewise, patients with hyperlordotic distribution preoperatively (LDI > 80%) experienced a decrease in LDI postoperatively, trending toward the normal range, although the changes were not statistically significant. Intervertebral lordosis for the L5 to S1 level increased significantly following the placement of a PIC in the normal and hypolordotic LDI groups. Changes in intervertebral lordosis for L5 to S1 were not significant for patients with preoperative hyperlordotic LDI. Reciprocal changes in intervertebral lordosis at L1 to L4 were not observed in any groups. CONCLUSIONS: PIC implants may provide a benefit for patients, particularly those with hypolordotic distributions preoperatively. They have the potential to further improve patient outcomes by helping surgeons to achieve patient-specific lordosis goals, which may help to reduce the risk of adjacent segment disease and revisions in patients undergoing short-segment lumbar intervertebral fusions. CLINICAL RELEVANCE: Personalized implants can help surgeons achieve patient-specific alignment goals, potentially prevent adjacent segment disease, and reduce long-term reinterventions.

3.
Int J Spine Surg ; 18(S1): S41-S49, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39191476

RESUMO

BACKGROUND: Incongruity between irregularly shaped vertebral endplates and the uniform surfaces of stock interbody fusion cages has been identified as contributing to cage subsidence, pseudarthrosis, and unpredictable alignment. Advances in manufacturing techniques have driven the development of personalized interbody cages (PICs) that can match individual endplate morphology and provide the exact shape and size needed to fill the disc space and achieve the planned correction. This study used computed tomography (CT) imaging to evaluate the implant-endplate contact area, fusion, subsidence, and achievement of planned alignment correction in patients receiving PIC devices. METHODS: This retrospective study included patients treated for adult spinal deformity at a single site and implanted with PIC devices at L4 to L5 or L5 to S1 for segmental stabilization and alignment correction, who received 1-year postoperative CT images as part of their standard of care. An evaluation using 3-dimensional thin-section scans was conducted. Implant-endplate contact and signs of fusion were assessed in each CT slice across both endplates. The degree of subsidence as well as measures of segmental and global lumbar alignment were also assessed. RESULTS: Fifteen patients were included in the study, with a mean age of 68.2 years. Follow-up ranged between 9 and 14 months. Twenty-six total lumbar levels were implanted; 20 with PIC devices via the anterior lumbar interbody fusion approach, 2 with stock cages via the anterior lumbar interbody fusion approach, and 4 with PIC devices via the transforaminal lumbar interbody fusion approach. CT analysis of PIC-implanted levels found an overall implant-endplate contact area ratio of 93.9%, a subsidence rate of 4.5%, a fusion rate of 100%, and satisfactory segmental and global lumbar correction compared with the preoperative plan. CONCLUSIONS: PIC implants can provide nearly complete contact with endplate surfaces regardless of the individual endplate morphology. Subsidence, fusion, and alignment assessments in this tomographic study illustrated results consistent with the benefits of a personalized interbody implant.

4.
Int J Spine Surg ; 18(S1): S16-S23, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39181716

RESUMO

BACKGROUND: Lumbar lordosis distribution has become a pivotal factor in re-establishing the foundational alignment of the lumbar spine. This can directly influence overall sagittal alignment, leading to improved long-term outcomes for patients. Despite the wide availability of hyperlordotic stock cages intended to achieve optimal postoperative alignment, there is a lack of correlation between the lordotic shape of a cage and the resultant intervertebral alignment. Recently, personalized spine surgery has witnessed significant advancements, including 3D-printed personalized interbody implants, which are customized to the surgeon's treatment and alignment goals. This study evaluates the reliability of 3D-printed patient-specific interbody implants to achieve the planned postoperative intervertebral alignment. METHODS: This is a retrospective study of 217 patients with spinal deformity or degenerative conditions. Patients were included if they received 3D-printed personalized interbody implants. The desired intervertebral lordosis (IVL) angle was prescribed into the device design for each personalized interbody (IVL goal). Standing postoperative radiographs were measured, and the IVL offset was calculated as IVL achieved minus IVL goal. RESULTS: In this patient population, 365 personalized interbodies were implanted, including 145 anterior lumbar interbody fusions (ALIFs), 99 lateral lumbar interbody fusions (LLIFs), and 121 transforaminal lumbar interbody fusions. Among the 365 treated levels, IVL offset was 1.1° ± 4.4° (mean ± SD). IVL was achieved within 5° of the plan in 299 levels (81.9%). IVL offset depended on the approach of the lumbar interbody fusion and was achieved within 5° for 85.9% of LLIF, 82.6% of transforaminal lumbar interbody fusions and 78.6% of ALIFs. Ten levels (2.7%) missed the planned IVL by >10°. ALIF and LLIF levels in which the plan was missed by more than 5° tended to be overcorrected. CONCLUSIONS: This study supports the use of 3D-printed personalized interbody implants to achieve planned sagittal intervertebral alignment. CLINICAL RELEVANCE: Personalized interbody implants can consistently achieve IVL goals and potentially impact foundational lumbar alignment.

5.
Global Spine J ; : 21925682231216926, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38124314

RESUMO

STUDY DESIGN: Multicenter cohort. OBJECTIVES: A report from the International Spine Study Group (ISSG) noted that surgeons failed to achieve alignment goals in nearly two-thirds of 266 complex adult deformity surgery (CADS) cases. We assess whether personalized interbody spacers are associated with improved rates of achieving goal alignment following adult spinal deformity (ASD) surgery. METHODS: ASD patients were included if their surgery utilized 3D-printed personalized interbody spacer(s) and they met ISSG CADS inclusion criteria. Planned alignment was personalized by the surgeon during interbody planning. Planned vs achieved alignment was assessed and compared with the ISSG CADS series that used stock interbodies. RESULTS: For 65 patients with personalized interbodies, 62% were women, mean age was 70.3 years (SD = 8.3), mean instrumented levels was 9.9 (SD = 4.1), and the mean number of personalized interbodies per patient was 2.2 (SD = .8). Segmental alignment was achieved close to plan for levels with personalized interbodies, with mean difference between goal and achieved as follows: intervertebral lordosis = .9° (SD = 5.2°), intervertebral coronal angle = .1° (SD = 4.7°), and posterior disc height = -0.1 mm (SD = 2.3 mm). Achieved pelvic incidence-to-lumbar lordosis mismatch (PI-LL) correlated significantly with goal PI-LL (r = .668, P < .001). Compared with the ISSG CADS cohort, utilization of personalized interbodies resulted in significant improvement in achieving PI-LL <5° of plan (P = .046) and showed a significant reduction in cases with PI-LL >15° of plan (P = .012). CONCLUSIONS: This study supports use of personalized interbodies as a means of better achieving goal segmental sagittal and coronal alignment and significantly improving achievement of goal PI-LL compared with stock devices.

6.
J Pediatr Orthop B ; 20(4): 195-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21659954

RESUMO

This retrospective observational study aimed to determine the accuracy of the placement of transpedicular thoracic screws used in idiopathic scoliosis and to evaluate the position and safety of the implants using postoperative computed tomography. Twenty-nine patients who underwent surgery for scoliosis between May 2003 and November 2005 were included in this study. The mean spinal curvature was 67°, and all of the patients had thoracic screws or hooks implanted. The positioning of 78 pedicle screws was evaluated using computed tomography after the free-handed technique was performed. The mean spinal curvature after surgery was 29°. Seventy-six percent of the screws were fully contained within the pedicle. Twenty-one screws breached the pedicle by between 2 and 4 mm (three medially and 18 laterally). Two screws were broken. A neurological deficit was identified in one case after surgery, but the deficit was reversed after the removal of the screws. This screw had a medial breach of greater than 4 mm. Most screws were inserted between the cortical vertebrae. Misplaced screws were most commonly inserted with a lateral cortical perforation.


Assuntos
Parafusos Ósseos , Escoliose/cirurgia , Fusão Vertebral/métodos , Adolescente , Criança , Feminino , Humanos , Masculino , Falha de Prótese , Reprodutibilidade dos Testes , Estudos Retrospectivos , Escoliose/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
J Pediatr Orthop B ; 18(2): 99-102, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19276993

RESUMO

Giant cell tumors (GCT) are rare in the cervical spine in adolescent children. This tumor is histologically benign, but there is a high recurrence rate. Although surgical resection of GCT arising in the cervical spine is commonly regarded as recommended treatment method, it is still a challenge to achieve satisfactory results. The authors describe a case of a patient of adolescent age with a GCT in the cervical spine. It was necessary to study the embolization of the vertebral artery to planning the vertebrectomy surgery for resection of the entire tumor to avoid recurrence. The resection of the tumor was carried out by combined access (anteriorly and posteriorly) and was stabilized with plate, posterior lateral mass screws, and autologous iliac crest graft.


Assuntos
Vértebras Cervicais/cirurgia , Embolização Terapêutica/métodos , Tumor de Células Gigantes do Osso/terapia , Neoplasias da Coluna Vertebral/terapia , Artéria Vertebral , Adolescente , Placas Ósseas , Parafusos Ósseos , Transplante Ósseo , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Feminino , Tumor de Células Gigantes do Osso/diagnóstico por imagem , Tumor de Células Gigantes do Osso/patologia , Humanos , Ílio/transplante , Próteses e Implantes , Radiografia , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA