Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-479189

RESUMO

White-tailed deer (Odocoileus virginianus) are highly susceptible to infection by SARS-CoV-2, with multiple reports of widespread spillover of virus from humans to free-living deer. While the recently emerged SARS-CoV-2 B.1.1.529 Omicron variant of concern (VoC) has been shown to be notably more transmissible amongst humans, its ability to cause infection and spillover to non-human animals remains a challenge of concern. We found that 19 of the 131 (14.5%; 95% CI: 0.10-0.22) white-tailed deer opportunistically sampled on Staten Island, New York, between December 12, 2021, and January 31, 2022, were positive for SARS-CoV-2 specific serum antibodies using a surrogate virus neutralization assay, indicating prior exposure. The results also revealed strong evidence of age-dependence in antibody prevalence. A significantly ({chi}2, p < 0.001) greater proportion of yearling deer possessed neutralizing antibodies as compared with fawns (OR=12.7; 95% CI 4-37.5). Importantly, SARS-CoV-2 nucleic acid was detected in nasal swabs from seven of 68 (10.29%; 95% CI: 0.0-0.20) of the sampled deer, and whole-genome sequencing identified the SARS-CoV-2 Omicron VoC (B.1.1.529) is circulating amongst the white-tailed deer on Staten Island. Phylogenetic analyses revealed the deer Omicron sequences clustered closely with other, recently reported Omicron sequences recovered from infected humans in New York City and elsewhere, consistent with human to deer spillover. Interestingly, one individual deer was positive for viral RNA and had a high level of neutralizing antibodies, suggesting either rapid serological conversion during an ongoing infection or a "breakthrough" infection in a previously exposed animal. Together, our findings show that the SARS-CoV-2 B.1.1.529 Omicron VoC can infect white-tailed deer and highlights an urgent need for comprehensive surveillance of susceptible animal species to identify ecological transmission networks and better assess the potential risks of spillback to humans. Key FindingsThese studies provide strong evidence of infection of free-living white-tailed deer with the SARS-CoV-2 B.1.1.529 Omicron variant of concern on Staten Island, New York, and highlight an urgent need for investigations on human-to-animal-to-human spillovers/spillbacks as well as on better defining the expanding host-range of SARS-CoV-2 in non-human animals and the environment.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-466677

RESUMO

Many animal species are susceptible to SARS-CoV-2 and could potentially act as reservoirs, yet transmission of the virus in non-human free-living animals has not been documented. White-tailed deer (Odocoileus virginianus), the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 may be circulating in deer, we tested 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through December of 2020 for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 deer (33.2%; 95% CI: 28, 38.9) samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, between November 23, 2020 and January 10, 2021, 80 of 97 (82.5%; 95% CI 73.7, 88.8) RPLN samples had detectable SARS-CoV-2 RNA by RT-PCR. Whole genome sequencing of the 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%), and B.1.311 (n = 19; 20%) accounting for ~75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple zooanthroponotic spillover events and deer-to-deer transmission. The discovery of sylvatic and enzootic SARS-CoV-2 transmission in deer has important implications for the ecology and long-term persistence, as well as the potential for spillover to other animals and spillback into humans. These findings highlight an urgent need for a robust and proactive "One Health" approach to obtaining a better understanding of the ecology and evolution of SARS-CoV-2. One-Sentence SummarySARS-CoV-2 was detected in one-third of sampled white-tailed deer in Iowa between September 2020 and January of 2021 that likely resulted from multiple human-to-deer spillover and deer-to-deer transmission events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...