Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 37(3): e23282, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541366

RESUMO

Melanoma is the most aggressive and lethal type of skin cancer, characterized by therapeutic resistance. In this context, the present study aimed to investigate the cytotoxic potential of manool, a diterpene from Salvia officinalis L., in human (A375) and murine (B16F10) melanoma cell lines. The analysis of cytotoxicity using the XTT assay showed the lowest IC50 after 48 h of treatment with the manool, being 17.6 and 18.2 µg/ml for A375 and B16F10, respectively. A selective antiproliferative effect of manool was observed on the A375 cells based on the colony formation assay, showing an IC50 equivalent to 5.6 µg/ml. The manool treatments led to 43.5% inhibition of the A375 cell migration at a concentration of 5.0 µg/ml. However, it did not affect cell migration in the B16F10 cells. Cell cycle analysis revealed that the manool interfered in the cell cycle of the A375 cells, blocking the G2/M phase. No changes in the cell cycle were observed in the B16F10 cells. Interestingly, manool did not induce apoptosis in the A375 cells, but apoptosis was observed after treatment of the B16F10 cells. Additionally, manool showed an antimelanoma effect in a reconstructed human skin model. Furthermore, in silico studies, showed that manool is stabilized in the active sites of the tubulin dimer with comparable energy concerning taxol, indicating that both structures can inhibit the proliferation of cancer cells. Altogether, it is concluded that manool, through the modulation of the cell cycle, presents a selective antiproliferative activity and a potential antimelanoma effect.


Assuntos
Diterpenos , Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Melanoma/metabolismo , Diterpenos/farmacologia , Apoptose , Técnicas de Cultura de Células , Proliferação de Células
2.
Planta Med ; 89(2): 158-167, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36170858

RESUMO

Guttiferone E (GE) is a benzophenone found in Brazilian red propolis. In the present study, the effect of GE on human (A-375) and murine (B16-F10) melanoma cells was investigated. GE significantly reduced the cellular viability of melanoma cells in a time-dependent manner. In addition, GE demonstrated antiproliferative effect, with IC50 values equivalent to 9.0 and 6.6 µM for A-375 and B16-F10 cells, respectively. The treatment of A-375 cells with GE significantly increased cell populations in G0/G1 phase and decreased those in G2/M phase. Conversely, on B16-F10 cells, GE led to a significant decrease in the populations of cells in G0/G1 phase and concomitantly an increase in the population of cells in phase S. A significantly higher percentage of apoptotic cells was observed in A-375 (43.5%) and B16-F10 (49.9%) cultures after treatment with GE. Treatments with GE caused morphological changes and significant decrease to the melanoma cells' density. GE (10 µM) inhibited the migration of melanoma cells, with a higher rate of inhibition in B16-F10 cells (73.4%) observed. In addition, GE significantly reduced the adhesion of A375 cells, but showed no effect on B16-F10. Treatment with GE did not induce changes in P53 levels in A375 cultures. Molecular docking calculations showed that GE is stable in the active sites of the tubulin dimer with a similar energy to taxol chemotherapy. Taken together, the data suggest that GE has promising antineoplastic potential against melanoma.


Assuntos
Antineoplásicos , Melanoma Experimental , Melanoma , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Antineoplásicos/uso terapêutico , Benzofenonas/farmacologia , Benzofenonas/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL
3.
Arch Oral Biol ; 143: 105546, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162339

RESUMO

OBJECTIVE: This study aimed (i) to evaluate the antibacterial and cytotoxic activities of the crude extract and fractions obtained from Euclea natalensis A.D.C. roots against bacteria that cause periodontal disease and caries and (ii) to identify the isolated compounds. DESIGN: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the extract and fractions were determined by the microplate dilution assay. The cytotoxicity of the extract and fractions was evaluated by using the XTT colorimetric assay and normal human fibroblast cells (GM07492A, lung fibroblasts). The compounds present in the most promising fraction were determined by qualitative analysis through liquid chromatography coupled to mass spectrometry (HPLC-MS-ESI). RESULTS: The MIC results ranged from 25 to > 400 µg/mL for the extract and from 1.56 to > 400 µg/mL for the fractions. To evaluate cytotoxicity, the tested concentrations of the extract and fractions ranged from 19.5 to 2500 µg/mL; IC50 values between 625 and 1250 µg/mL were obtained. Analysis of the main bioactive fraction by HPLC-MS-ESI identified phenolic acids, coumarins, naphthoquinones, lignans, and fatty acids. CONCLUSIONS: The E. natalensis root extract and fractions displayed good antibacterial activity against periodontal pathogenic and cariogenic bacteria. The antibacterial activity may be due to compounds present in the extract and fractions, which also showed low cytotoxicity to normal human cells. These data are relevant and encourage further research into this plant species, which may contribute to the discovery of new herbal medicines that will help to mitigate the problems caused by oral pathogenic bacteria.


Assuntos
Ebenaceae , Lignanas , Naftoquinonas , Antibacterianos/química , Bactérias , Cumarínicos , Ácidos Graxos , Humanos , Testes de Sensibilidade Microbiana , Naftoquinonas/farmacologia , Extratos Vegetais/química
4.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563062

RESUMO

Parental environmental experiences affect disease susceptibility in the progeny through epigenetic inheritance. Pesticides are substances or mixtures of chemicals-some of which are persistent environmental pollutants-that are used to control pests. This review explores the evidence linking parental exposure to pesticides and endocrine disruptors to intergenerational and transgenerational susceptibility of cancer in population studies and animal models. We also discuss the impact of pesticides and other endocrine disruptors on the germline epigenome as well as the emerging evidence for how epigenetic information is transmitted between generations. Finally, we discuss the importance of this mode of inheritance in the context of cancer prevention and the challenges ahead.


Assuntos
Disruptores Endócrinos , Neoplasias , Praguicidas , Animais , Metilação de DNA , Disruptores Endócrinos/toxicidade , Epigênese Genética , Padrões de Herança/genética , Neoplasias/induzido quimicamente , Neoplasias/genética , Praguicidas/toxicidade
5.
J Pharm Pharmacol ; 74(5): 740-749, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35299250

RESUMO

OBJECTIVES: Dalbergia ecastaphyllum (L.) Taub. is a semi-prostrate species associated with estuaries, mangroves and dunes. This plant species has great ecological and economic importance, especially concerning apiculture pasture and Brazilian red propolis production. In this study, non-clinical toxicological evaluations of the hydroalcoholic extract of D. ecastaphyllum stems (DEHE), the resin production source, were conducted. In addition, the action of DEHE on genomic instability and colon carcinogenesis was investigated. METHODS AND RESULTS: The extract's chemical profile was analysed by HPLC, and medicarpin, vestitol and neovestitol were found as major compounds. DEHE showed an IC50 equivalent to 373.2 µg/ml and LC50 equal 24.4 mg/L, when evaluated using the XTT colorimetric test and the zebrafish acute toxicity assay, respectively. DEHE was neither genotoxic nor cytotoxic at the highest dose, 2000 mg/kg, by peripheral blood micronucleus test. The treatments DEHE (6 and 24 mg/kg) led to the reduction of micronuclei induced by doxorubicin (DXR) in mice. Furthermore, significantly higher serum levels of reduced glutathione were observed in animals treated with DEHE plus DXR, revealing an antioxidant effect. Treatments with DEHE (48 mg/kg) led to a significant reduction in pre-neoplastic lesions induced by the 1,2-dimethylhydrazine (DMH) carcinogen in the rat colon. Immunohistochemical analysis revealed significantly lower levels of expression of COX-2 (86%) and PCNA (83%) in the colon of rats treated with DEHE plus DMH, concerning those treated with the carcinogen. CONCLUSIONS: These results indicate the involvement of anti-inflammatory and antiproliferative pathways in the protective effect of DEHE.


Assuntos
Dalbergia , Própole , Animais , Camundongos , Ratos , Brasil , Carcinógenos , Quimioprevenção , Dalbergia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Própole/química , Própole/farmacologia , Peixe-Zebra
6.
J Nat Prod ; 85(2): 426-432, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35157797

RESUMO

The manool diterpene, found in abundance in Salvia officinalis L., showed a selective cytotoxic effect against murine melanoma cells. Therefore, the present study aimed to evaluate the antitumor potential of manool in a murine melanoma model, administered by three routes: oral, subcutaneous, and intraperitoneal. In addition, the antimelanoma effect of manool (orally) combined with cisplatin (subcutaneous) was evaluated. The results obtained revealed that manool, administered by the three routes, was able to significantly decrease the mass and frequency of mitosis of the tumor tissue. The data obtained revealed that manool, at a dose of 20 mg/kg, was able to significantly decrease the tumor mass when administered by the three routes, with the percentages of reduction being equivalent to 62.4% (oral), 48.5% (intraperitoneal), and 38.8% (subcutaneous), without toxic effects. The treatment of manool plus cisplatin led to 86.7% reduction in tumor mass, higher than that observed in treatment with manool or cisplatin alone (50.7%), although signs of toxicity have been observed. The results also showed that treatments with manool (20 mg/kg orally) and/or cisplatin did not alter the activity of caspase 3 cleaved in tumor tissue. Therefore, manool revealed a promising antimelanoma effect, but without involvement of the caspase 3 cleaved pathway.


Assuntos
Diterpenos , Melanoma , Animais , Caspase 3 , Cisplatino/farmacologia , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Melanoma/tratamento farmacológico , Camundongos
7.
J Photochem Photobiol B ; 226: 112365, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34823208

RESUMO

The widespread use of conventional chemical antifungal agents has led to worldwide concern regarding the selection of resistant isolates. In this scenario, antimicrobial photodynamic treatment (APDT) has emerged as a promising alternative to overcome this issue. The technique is based on the use of a photosensitizer (PS) and light in the presence of molecular oxygen. Under these conditions, the PS generates reactive oxygen species which damage the biomolecules of the target organism leading to cell death. The great potential of APDT against plant-pathogenic fungi has already been reported both in vitro and in planta, indicating this control measure has the potential to be widely used in crop plants. However, there is a lack of studies on environmental risk with ecotoxicological assessment of PSs used in APDT. Therefore, this study aimed to evaluate the environmental toxicity of four phenothiazinium PSs: i) methylene blue (MB), ii) new methylene blue N (NMBN), iii) toluidine blue O (TBO), and iv) dimethylmethylene blue (DMMB) and also of the commercial antifungal NATIVO®, a mixture of trifloxystrobin and tebuconazole. The experiments were performed with Daphnia similis neonates and zebrafish embryos. Our results showed that the PSs tested had different levels of toxicity, with MB being the less toxic and DMMB being the most. Nonetheless, the environmental toxicity of these PSs were lower when compared to that of NATIVO®. Furthermore, estimates of bioconcentration and of biotransformation half-life indicated that the PSs are environmentally safer than NATIVO®. Taken together, our results show that the toxicity associated with phenothiazinium PSs would not constitute an impediment to their use in APDT. Therefore, APDT is a promising approach to control plant-pathogenic fungi with reduced risk for selecting resistant isolates and lower environmental impacts when compared to commonly used antifungal agents.


Assuntos
Triazóis
8.
Braz. J. Pharm. Sci. (Online) ; 58: e20278, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403705

RESUMO

Abstract Adenocalymma axillarum (K.Schum.) L.G. Lohmann is a liana belonging to the family Bignoniaceae. In traditional medicine, the genus Adenocalymma is used to treat fever, skin ailments, and body, joint, and facial muscle pains, and it is also applied as cosmetic. Biological assays conducted with the A. axillarum crude leaf ethanol extract have indicated leishmanicidal activity and absence of cytotoxicity. This study aimed to analyze the A. axillarum leaf ethanol crude extract by high-performance liquid chromatography-high-resolution mass spectrometry- diode array detector (HPLC-HRMS-DAD) and to evaluate the leishmanicidal and cytotoxic activities of this crude extract, its fractions, and isolated compounds. HPLC-HRMS-DAD analysis of this extract revealed that it consisted mainly of flavonoids, with nine major compounds. Extract purification yielded 4-hydroxy-N-methylproline, 6-β-hydroxyipolamiide, quercetin-3-O-robinobioside, hyperin, isorhamnetin-3-O-robinobioside, and 3'-O-methylhyperin, which were identified by Nuclear Magnetic Resonance. The isolated compounds were inactive against Leishmania amazonensis promastigotes and human lung fibroblast cells.


Assuntos
Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética/métodos , Cromatografia Líquida de Alta Pressão/métodos , Folhas de Planta/classificação , Misturas Complexas/química , Leishmania/classificação , Bignoniaceae/classificação , Articulações/anormalidades
9.
Inorg Chem ; 60(18): 14174-14189, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477373

RESUMO

Ruthenium(II) complexes (Ru1-Ru5), with the general formula [Ru(N-S)(dppe)2]PF6, bearing two 1,2-bis(diphenylphosphino)ethane (dppe) ligands and a series of mercapto ligands (N-S), have been developed. The combination of these ligands in the complexes endowed hydrophobic species with high cytotoxic activity against five cancer cell lines. For the A549 (lung) and MDA-MB-231 (breast) cancer cell lines, the IC50 values of the complexes were 288- to 14-fold lower when compared to cisplatin. Furthermore, the complexes were selective for the A549 and MDA-MB-231 cancer cell lines compared to the MRC-5 nontumor cell line. The multitarget character of the complexes was investigated by using calf thymus DNA (CT DNA), human serum albumin, and human topoisomerase IB (hTopIB). The complexes potently inhibited hTopIB. In particular, complex [Ru(dmp)(dppe)2]PF6 (Ru3), bearing the 4,6-diamino-2-mercaptopyrimidine (dmp) ligand, effectively inhibited hTopIB by acting on both the cleavage and religation steps of the catalytic cycle of this enzyme. Molecular docking showed that the Ru1-Ru5 complexes have binding affinity by active sites on the hTopI and hTopI-DNA, mainly via π-alkyl and alkyl hydrophobic interactions, as well as through hydrogen bonds. Complex Ru3 displayed significant antitumor activity against murine melanoma in mouse xenograph models, but this complex did not damage DNA, as revealed by Ames and micronucleus tests.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Fosfinas/farmacologia , Rutênio/farmacologia , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Fosfinas/química , Rutênio/química , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Células Tumorais Cultivadas
10.
Chem Res Toxicol ; 34(4): 1024-1033, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33720704

RESUMO

Propolis is one of the most widely used products in traditional medicine. One of the most prominent types of Brazilian propolis is the red one, whose primary botanical source is Dalbergia ecastaphyllum (L.) Taub. Despite the potential of Brazilian red propolis for developing new products with pharmacological activity, few studies guarantee safety in its use. The objective of this study was the evaluation of the possible toxic effects of Brazilian red propolis and D. ecastaphyllum, as well as the cytotoxicity assessment of the main compounds of red propolis on tumoral cell lines. Hydroalcoholic extracts of the Brazilian red propolis (BRPE) and D. ecastaphyllum stems (DSE) and leaves (DLE) were prepared and chromatographed for isolation of the major compounds. RP-HPLC-DAD was used to quantify the major compounds in the obtained extracts. The XTT assay was used to evaluate the cytotoxic activity of the extracts in the human fibroblast cell line (GM07492A). The results revealed IC50 values of 102.7, 143.4, and 253.1 µg/mL for BRPE, DSE, and DLE, respectively. The extracts were also evaluated for their genotoxic potential in the micronucleus assay in Chinese hamster lung fibroblasts cells (V79), showing the absence of genotoxicity. The BRPE was investigated for its potential in vivo toxicity in the zebrafish model. Concentrations of 0.8-6.3 mg/L were safe for the animals, with a LC50 of 9.37 mg/L. Of the 11 compounds isolated from BRPE, medicarpin showed a selective cytotoxic effect against the HeLa cell line. These are the initial steps to determine the toxicological potential of Brazilian red propolis.


Assuntos
Dalbergia/química , Extratos Vegetais/farmacologia , Própole/farmacologia , Animais , Brasil , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Própole/química , Própole/isolamento & purificação , Peixe-Zebra
11.
J Biochem Mol Toxicol ; 35(4): e22712, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33484013

RESUMO

Asiatic acid (AA) is a triterpene with promising pharmacological activity. In the present study, in vitro and in vivo assays were conducted to understand the effect of AA on cell proliferation and genomic instability. AA was cytotoxic to human tumor cell lines (M059J, HeLa, and MCF-7), with IC50 values ranging from 13.91 to 111.72 µM. In the case of M059J, AA exhibited selective cytotoxicity after 48 h of treatment (IC50 = 24 µM), decreasing the percentage of cells in the G0/G1 phase, increasing the percentage of cells in the S phase, and inducing apoptosis. A significant increase in chromosomal damage was observed in V79 cell cultures treated with AA (40 µM), revealing genotoxic activity. In contrast, low concentrations (5, 10, and 20 µM) of AA significantly reduced the frequencies of micronuclei induced by the mutagens doxorubicin (DXR), methyl methanesulfonate, and hydrogen peroxide. A reduction of DXR-induced intracellular free radicals was found in V79 cells treated with AA (10 µM). The antigenotoxic effect of AA (30 mg/kg) was also observed against DXR-induced chromosomal damage in Swiss mice. Significant reductions in p53 levels were verified in the liver tissue of these animals. Taken together, the data indicate that AA exerted antiproliferative activity in M059J tumor cells, which is probably related to the induction of DNA damage, leading to cell cycle arrest and apoptosis. Additionally, low concentrations of AA exhibited antigenotoxic effects and its antioxidant activity may be responsible, at least in part, for chemoprevention.


Assuntos
Antioxidantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Triterpenos Pentacíclicos/farmacologia , Animais , Cricetulus , Citotoxinas/efeitos adversos , Citotoxinas/farmacologia , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Células HeLa , Humanos , Células MCF-7 , Masculino , Camundongos
12.
Mutagenesis ; 36(2): 177-185, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33512444

RESUMO

The present study aimed to evaluate the effect of the manool diterpene on genomic integrity. For this purpose, we evaluated the influence of manool on genotoxicity induced by mutagens with different mechanisms of action, as well as on colon carcinogenesis. The results showed that manool (0.5 and 1.0 µg/ml) significantly reduced the frequency of micronuclei induced by doxorubicin (DXR) and hydrogen peroxide in V79 cells but did not influence genotoxicity induced by etoposide. Mice receiving manool (1.25 mg/kg) exhibited a significant reduction (79.5%) in DXR-induced chromosomal damage. The higher doses of manool (5.0 and 20 mg/kg) did not influence the genotoxicity induced by DXR. The anticarcinogenic effect of manool (0.3125, 1.25 and 5.0 mg/kg) was also observed against preneoplastic lesions chemically induced in rat colon. A gradual increase in manool doses did not cause a proportional reduction of preneoplastic lesions, thus demonstrating the absence of a dose-response relationship. The analysis of serum biochemical indicators revealed the absence of hepatotoxicity and nephrotoxicity of treatments. To explore the chemopreventive mechanisms of manool via anti-inflammatory pathways, we evaluated its effect on nitric oxide (NO) production and on the expression of the NF-kB gene. At the highest concentration tested (4 µg/ml), manool significantly increased NO production when compared to the negative control. On the other hand, in the prophylactic treatment model, manool (0.5 and 1.0 µg/ml) was able to significantly reduce NO levels produced by macrophages stimulated with lipopolysaccharide. Analysis of NF-kB in hepatic and renal tissues of mice treated with manool and DXR revealed that the mutagen was unable to stimulate expression of the gene. In conclusion, manool possesses antigenotoxic and anticarcinogenic effects and its anti-inflammatory potential might be related, at least in part, to its chemopreventive activity.


Assuntos
Anticarcinógenos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Diterpenos/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Lesões Pré-Cancerosas/tratamento farmacológico , Animais , Anticarcinógenos/química , Linhagem Celular , Neoplasias do Colo/induzido quimicamente , Cricetinae , Modelos Animais de Doenças , Diterpenos/química , Relação Dose-Resposta a Droga , Doxorrubicina/efeitos adversos , Etoposídeo/efeitos adversos , Peróxido de Hidrogênio/efeitos adversos , Masculino , Camundongos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Testes de Mutagenicidade , Extratos Vegetais/farmacologia , Lesões Pré-Cancerosas/induzido quimicamente , Ratos , Ratos Wistar , Salvia officinalis/química
13.
J Toxicol Environ Health A ; 83(21-22): 673-686, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32886024

RESUMO

Licochalcone A (LicoA) is a flavonoid derived from Glycyrrhiza spp. plants. The present study aimed to investigate the antioxidant, cytotoxic, genotoxic, and chemopreventive effects of LicoA in in vitro and in vivo systems. The results showed that LicoA (197.1 µM) scavenged 77.92% of free radicals. Concentrations of 147.75 µM or higher LicoA produced cytotoxicity in Chinese hamster ovary (CHO) fibroblasts. LicoA treatments of 4.43 to 10.34 µM did not exert genotoxic activity, but at 11.8 µM significantly lowered nuclear division indexes, compared to negative control, revealing cytotoxicity. Lower concentrations (1.85 to 7.39 µM) exhibited protective activity against chromosomal damage induced by doxorubicin (DXR) or methyl methanesulfonate (MMS) in CHO cells. LicoA exerted no marked influence on DXR-induced genotoxicity in mouse erythrocytes, but reduced pre-neoplastic lesions induced by 1,2-dimethylhydrazine (DMH) in rat colon at 3.12 to 50 mg/kg b.w. Biochemical markers and body weight indicated no apparent toxicity. These findings contribute to better understanding the mechanisms underlying LicoA-initiated activity as a promising chemopreventive compound. ABBREVIATIONS: AC, aberrant crypts; ACF, aberrant crypt foci; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BOD, biochemical oxygen demand; CHO, Chinese hamster ovary fibroblast; DMH, 1,2-dimethylhydrazine; DMSO, dimethyl sulfoxide; DPPH, 2,2-diphenyl-1-picrylhydrazyl; DXR, doxorubicin hydrochloride; EDTA, ethylenediaminetetraacetic acid; GA, gallic acid; LicoA, licochalcone A; MMS, methyl methanesulfonate; MNBC, micronucleated binucleated cells; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; XTT, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide.


Assuntos
Antioxidantes/farmacologia , Chalconas/farmacologia , Citotoxinas/farmacologia , Mutagênicos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Masculino , Camundongos
14.
Nat Prod Res ; 34(17): 2528-2532, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30623721

RESUMO

Copaifera langsdorffii L. is one of the most known medicinal species in Brazil. Its leaves are rich in phenolic compounds with potential biological activities as an antioxidant and chelating agent. This paper reports the isolation of four compounds from the hydroalcoholic extract of the leaves of C. langsdorffii and the investigation of their possible cytoprotective effects against heavy metal poisoning. Quercitrin (1), afzelin (2), 3,5-di-O-(3-O-methyl galloyl) quinic acid (3) and 4,5-di-O-(3-O-methyl galloyl) quinic acid (4), were associated with toxic doses of methylmercury and lead and evaluated by Alamar blue cell viability assays in HepG2 and PC12. The compounds displayed significant cytoprotective effect for the HepG2 cell line against both metals. Compounds 1-4 did not protect PC12 cells against methylmercury induced-cytotoxicity, but at lower concentrations, they protected against lead induced-cytotoxicity. The evaluated compounds showed a promising cytoprotection effect against exposure to heavy metals and should be further investigated as protective agents.


Assuntos
Fabaceae/química , Intoxicação por Metais Pesados/tratamento farmacológico , Compostos de Metilmercúrio/antagonistas & inibidores , Extratos Vegetais/farmacologia , Substâncias Protetoras/isolamento & purificação , Animais , Antioxidantes , Brasil , Linhagem Celular , Intoxicação por Metais Pesados/prevenção & controle , Humanos , Chumbo/toxicidade , Intoxicação por Chumbo/tratamento farmacológico , Intoxicação por Chumbo/prevenção & controle , Manosídeos , Intoxicação por Mercúrio/tratamento farmacológico , Intoxicação por Mercúrio/prevenção & controle , Compostos de Metilmercúrio/toxicidade , Fenóis , Folhas de Planta/química , Proantocianidinas , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Ácido Quínico , Ratos
15.
J Toxicol Environ Health A ; 82(6): 401-410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31066341

RESUMO

Usnic acid (UA) is one of the pharmacologically most important compounds produced by several lichen species. To better understand the mechanism of action (MOA) of this important substance, this study examined the genotoxicity attributed to UA and its influence on mutagens with varying MOA using the micronucleus (MN) test in Chinese hamster ovary cells (CHO). Additional experiments were conducted to investigate the effect of UA on colon carcinogenesis in Wistar rats employing the aberrant crypt focus (ACF) assay. In vitro studies showed a significant increase in the frequency of MN in cultures treated with the highest UA concentration tested (87.13 µM). In contrast, UA concentrations of 10.89, 21.78, or 43.56 µM produced an approximate 60% reduction in chromosomal damage induced by doxorubicin, hydrogen peroxide, and etoposide, indicating an antigenotoxic effect. In the ACF assay, male Wistar rats treated with different UA doses (3.125, 12.5, or 50 mg/kg b.w.) and with the carcinogen 1,2-dimethylhydrazine exhibited a significantly lower incidence of neoplastic lesions in the colon than animals treated only with the carcinogen. Data suggest that the MOA responsible for the chemopreventive effect of UA may be related to interaction with DNA topoisomerase II and/or the antioxidant potential of the compound.


Assuntos
Anticarcinógenos/farmacologia , Benzofuranos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Instabilidade Genômica/efeitos dos fármacos , Lesões Pré-Cancerosas/tratamento farmacológico , Animais , Células CHO , Cricetinae , Cricetulus , Testes de Mutagenicidade
16.
Nat Prod Res ; 33(17): 2566-2570, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29611435

RESUMO

In this study, the chemical composition and antibacterial and antiproliferative potential of the essential oil obtained from fresh leaves of Psidium myrtoides (PM-EO) against oral pathogens and human tumour cell lines were investigated for the first time. GC-FID and GC-MS analyses showed that trans-ß-caryophyllene (30.9%), α-humulene (15.9%), α-copaene (7.8%), caryophyllene oxide (7.3%) and α-bisabolol (5.3%) are the major constituents of PM-EO. The antibacterial activity of PM-EO against a panel of oral pathogens was investigated in terms of their minimal inhibitory concentrations (MIC) using the broth microdilution method. PM-EO displayed moderate activity against Streptococcus mitis (MIC = 100 µg/mL), S. sanguinis (MIC = 100 µg/mL), S. sobrinus (MIC = 250 µg/mL), and S. salivarius (MIC = 250 µg/mL), and strong activity against S. mutans (MIC = 62.5 µg/mL). The antiproliferative activity in normal (GM07492A, lung fibroblasts) and tumour cell lines (MCF-7, HeLa, and M059 J) was performed using the XTT assay. PM-EO showed 50% inhibition of normal cell growth at 359.8 ± 6.3 µg/mL. Antiproliferative activity was observed against human tumour cell lines, with IC50 values significantly lower than that obtained for the normal cell line, demonstrating IC50 values for MCF-7 cells (254.5 ± 1.6 µg/mL), HeLa cells (324.2 ± 41.4 µg/mL) and M059 J cells (289.3 ± 10.9 µg/mL). Therefore, the cytotoxicity of PM-EO had little influence on the antibacterial effect, since it showed antibacterial activity at lower concentrations. Our results suggest that PM-EO is a promising source of new antibacterial and antitumour agents.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Óleos Voláteis/química , Psidium/química , Linhagem Celular Tumoral , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Testes de Sensibilidade Microbiana , Sesquiterpenos Monocíclicos , Myrtaceae/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Sesquiterpenos Policíclicos , Sesquiterpenos/análise
17.
Future Microbiol ; 13: 1637-1646, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30480459

RESUMO

AIM: Geraniol and linalool are major constituents of the essential oils of medicinal plants. MATERIALS & METHODS: Antifungal activity of geraniol and linalool were evaluated against five Candida species. The genotoxicity of these compounds was evaluated by the cytokinesis-block micronucleus test, and the embryotoxic assays use zebrafish model. RESULTS: Geraniol and linalool inhibited Candida growth, but geraniol was more effective. The geraniol at concentration of 800 µg/ml and the linalool at concentration of 125 µg/ml significantly increased chromosome damage. Geraniol was more toxic to zebrafish embryo than linalool: LC50 values were 31.3 and 193.3 µg/ml, respectively. CONCLUSION: Geraniol and linalool have anticandidal activity, but they also exert genotoxic and embryotoxic effects at the highest tested concentrations.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Monoterpenos/farmacologia , Terpenos/farmacologia , Peixe-Zebra , Monoterpenos Acíclicos , Animais , Candida/crescimento & desenvolvimento , Linhagem Celular/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Testes de Mutagenicidade , Óleos Voláteis/farmacologia , Plantas Medicinais/química , Análise de Sobrevida , Teratogênicos
18.
Biometals ; 30(6): 859, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29022284

RESUMO

This article has been corrected. One of the author names was given incorrect. Please find in this erratum the correct author name: "Heloiza Diniz Nicolella" that should be regarded as final by the reader.

19.
Biometals ; 30(6): 841-857, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28840394

RESUMO

Novel lipophilic gold(I) complexes containing 1,3,4-oxadiazol-2-thione or 1,3-thiazolidine-2-thione derivatives were synthesized and characterized by IR, high resolution mass spectrometry, and 1H, 13C 31P NMR. The cytotoxicity of the compounds was evaluated considering cisplatin and/or auranofin as reference in different tumor cell lines: colon cancer (CT26WT), metastatic skin melanoma (B16F10), breast adenocarcinoma (MCF-7), cervical carcinoma (HeLa), glioblastoma (M059 J). Normal human lung fibroblasts (GM07492-A) and kidney normal cell (BHK-21) were also evaluated. The gold(I) complexes were more active than their respective free ligands and cisplatin. Furthermore, antibacterial activity was evaluated against Gram-positive bacteria Staphylococcus aureus ATCC 25213, Staphylococcus epidermidis ATCC 12228 and Gram-negative bacteria Escherichia coli ATCC 11229 and Pseudomonas aeruginosa ATCC 27853 and expressed as the minimum inhibitory concentration (MIC). The complexes exhibited lower MIC values when compared to the ligands and chloramphenicol against Gram-positive bacteria and Gram-negative bacteria. Escherichia coli was sensitive one to the action of gold(I) complexes.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Compostos Organoáuricos/química , Compostos Organoáuricos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Testes de Sensibilidade Microbiana , Compostos Organoáuricos/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tionas/química
20.
Chem Biodivers ; 14(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28504841

RESUMO

We have investigated the chemical composition and the antibacterial activity of the essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants (Chenopodiaceae) (DA-EO) against a representative panel of cariogenic bacteria. We have also assessed the in vitro schistosomicidal effects of DA-EO on Schistosoma mansoni and its cytotoxicity to GM07492-A cells in vitro. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS) revealed that the monoterpenes cis-piperitone oxide (35.2%), p-cymene (14.5%), isoascaridole (14.1%), and α-terpinene (11.6%) were identified by as the major constituents of DA-EO. DA-EO displayed weak activity against Streptococcus sobrinus and Enterococcus faecalis (minimum inhibitory concentration (MIC) = 1000 µg/ml). On the other hand, DA-EO at 25 and 12.5 µg/ml presented remarkable schistosomicidal action in vitro and killed 100% of adult worm pairs within 24 and 72 h, respectively. The LC50 values of DA-EO were 6.50 ± 0.38, 3.66 ± 1.06, and 3.65 ± 0.76 µg/ml at 24, 48, and 72 h, respectively. However, DA-EO at concentrations higher than 312.5 µg/ml significantly reduced the viability of GM07492-A cells (IC50  = 207.1 ± 4.4 µg/ml). The selectivity index showed that DA-EO was 31.8 times more toxic to the adult S. mansoni worms than GM07492-A cells. Taken together, these results demonstrate the promising schistosomicidal potential of the essential oil of Dysphania ambrosioides.


Assuntos
Chenopodiaceae/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomicidas/química , Esquistossomicidas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chenopodiaceae/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lacticaseibacillus casei/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/toxicidade , Esquistossomicidas/isolamento & purificação , Streptococcus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...