Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 41(12): 2136-2153.e13, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37995682

RESUMO

CCS1477 (inobrodib) is a potent, selective EP300/CBP bromodomain inhibitor which induces cell-cycle arrest and differentiation in hematologic malignancy model systems. In myeloid leukemia cells, it promotes rapid eviction of EP300/CBP from an enhancer subset marked by strong MYB occupancy and high H3K27 acetylation, with downregulation of the subordinate oncogenic network and redistribution to sites close to differentiation genes. In myeloma cells, CCS1477 induces eviction of EP300/CBP from FGFR3, the target of the common (4; 14) translocation, with redistribution away from IRF4-occupied sites to TCF3/E2A-occupied sites. In a subset of patients with relapsed or refractory disease, CCS1477 monotherapy induces differentiation responses in AML and objective responses in heavily pre-treated multiple myeloma. In vivo preclinical combination studies reveal synergistic responses to treatment with standard-of-care agents. Thus, CCS1477 exhibits encouraging preclinical and early-phase clinical activity by disrupting recruitment of EP300/CBP to enhancer networks occupied by critical transcription factors.


Assuntos
Neoplasias Hematológicas , Proteínas Nucleares , Humanos , Linhagem Celular Tumoral , Fatores de Transcrição , Domínios Proteicos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Proteína p300 Associada a E1A
2.
Oncogene ; 41(44): 4841-4854, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171271

RESUMO

Pharmacologic inhibition of LSD1 induces molecular and morphologic differentiation of blast cells in acute myeloid leukemia (AML) patients harboring MLL gene translocations. In addition to its demethylase activity, LSD1 has a critical scaffolding function at genomic sites occupied by the SNAG domain transcription repressor GFI1. Importantly, inhibitors block both enzymatic and scaffolding activities, in the latter case by disrupting the protein:protein interaction of GFI1 with LSD1. To explore the wider consequences of LSD1 inhibition on the LSD1 protein complex we applied mass spectrometry technologies. We discovered that the interaction of the HMG-box protein HMG20B with LSD1 was also disrupted by LSD1 inhibition. Downstream investigations revealed that HMG20B is co-located on chromatin with GFI1 and LSD1 genome-wide; the strongest HMG20B binding co-locates with the strongest GFI1 and LSD1 binding. Functional assays demonstrated that HMG20B depletion induces leukemia cell differentiation and further revealed that HMG20B is required for the transcription repressor activity of GFI1 through stabilizing LSD1 on chromatin at GFI1 binding sites. Interaction of HMG20B with LSD1 is through its coiled-coil domain. Thus, HMG20B is a critical component of the GFI1:LSD1 transcription repressor complex which contributes to leukemia cell differentiation block.


Assuntos
Histona Desmetilases , Leucemia Mieloide Aguda , Humanos , Diferenciação Celular/genética , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Cell Proteomics ; 21(7): 100243, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577067

RESUMO

Protein arginine (R) methylation is a post-translational modification involved in various biological processes, such as RNA splicing, DNA repair, immune response, signal transduction, and tumor development. Although several advancements were made in the study of this modification by mass spectrometry, researchers still face the problem of a high false discovery rate. We present a dataset of high-quality methylations obtained from several different heavy methyl stable isotope labeling with amino acids in cell culture experiments analyzed with a machine learning-based tool and show that this model allows for improved high-confidence identification of real methyl-peptides. Overall, our results are consistent with the notion that protein R methylation modulates protein-RNA interactions and suggest a role in rewiring protein-protein interactions, for which we provide experimental evidence for a representative case (i.e., NONO [non-POU domain-containing octamer-binding protein]-paraspeckle component 1 [PSPC1]). Upon intersecting our R-methyl-sites dataset with the PhosphoSitePlus phosphorylation dataset, we observed that R methylation correlates differently with S/T-Y phosphorylation in response to various stimuli. Finally, we explored the application of heavy methyl stable isotope labeling with amino acids in cell culture to identify unconventional methylated residues and successfully identified novel histone methylation marks on serine 28 and threonine 32 of H3. The database generated, named ProMetheusDB, is freely accessible at https://bioserver.ieo.it/shiny/app/prometheusdb.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma , Aminoácidos/metabolismo , Humanos , Marcação por Isótopo/métodos , Espectrometria de Massas , Metilação , Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Oncogene ; 41(6): 878-894, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862459

RESUMO

The histone demethylase LSD1 is over-expressed in hematological tumors and has emerged as a promising target for anticancer treatment, so that several LSD1 inhibitors are under development and testing, in preclinical and clinical settings. However, the complete understanding of their complex mechanism of action is still unreached. Here, we unraveled a novel mode of action of the LSD1 inhibitors MC2580 and DDP-38003, showing that they can induce differentiation of AML cells through the downregulation of the chromatin protein GSE1. Analysis of the phenotypic effects of GSE1 depletion in NB4 cells showed a strong decrease of cell viability in vitro and of tumor growth in vivo. Mechanistically, we found that a set of genes associated with immune response and cytokine-signaling pathways are upregulated by LSD1 inhibitors through GSE1-protein reduction and that LSD1 and GSE1 colocalize at promoters of a subset of these genes at the basal state, enforcing their transcriptional silencing. Moreover, we show that LSD1 inhibitors lead to the reduced binding of GSE1 to these promoters, activating transcriptional programs that trigger myeloid differentiation. Our study offers new insights into GSE1 as a novel therapeutic target for AML.


Assuntos
Histona Desmetilases
5.
Sci Transl Med ; 13(623): eabf7036, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878824

RESUMO

Glioblastoma (GBM) is a fatal tumor whose aggressiveness, heterogeneity, poor blood-brain barrier penetration, and resistance to therapy highlight the need for new targets and clinical treatments. A step toward clinical translation includes the eradication of GBM tumor-initiating cells (TICs), responsible for GBM heterogeneity and relapse. By using patient-derived TICs and xenograft orthotopic models, we demonstrated that the selective lysine-specific histone demethylase 1 inhibitor DDP_38003 (LSD1i) is able to penetrate the brain parenchyma in vivo in preclinical models, is well tolerated, and exerts antitumor activity in molecularly different GBMs. LSD1 genetic targeting further strengthens the role of LSD1 in GBM TIC maintenance. GBM TIC plasticity supports their adaptation and survival under a plethora of environmental stresses, including nutrient deficiency and proteostasis perturbation. By mimicking these stresses in vitro, we found that LSD1 inhibition hampers the induction of the activating transcription factor 4 (ATF4), the master regulator of the integrated stress response (ISR). The resulting aberrant ISR sensitizes GBM TICs to stress-induced cell death, hampering tumor aggressiveness. Functionally, LSD1i interferes with LSD1 scaffolding function and prevents its interaction with CREBBP, a critical ATF4 activator. By disrupting the interaction between CREBBP and LSD1-ATF4 axis, LSD1 inhibition prevents GBM TICs from overcoming stress and sustaining GBM progression. The effectiveness of the LSD1 inhibition in preclinical models shown here places a strong rationale toward its clinical translation for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Desmetilases/metabolismo , Humanos , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/patologia
6.
Methods Mol Biol ; 2351: 251-274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34382194

RESUMO

In this chapter, we describe the proteomic approach named "Native Chromatin Proteomics" (N-ChroP) that couples a modified Chromatin ImmunoPrecipitation (ChIP) protocol with the mass spectrometry (MS) analysis of immunoprecipitated proteins to study the combinatorial enrichment or exclusion of histone post-translational modifications (PTMs) at specific genomic regions, such as promoters or enhancers. We describe the protocol steps from the digestion of chromatin and nucleosome immunoprecipitation to histone digestion and peptide enrichment prior to MS analysis, up to the MS raw data analysis. We also discuss current challenges and offer suggestions based on the direct hands-on experience acquired during the method setup.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/genética , Cromatina/metabolismo , Genômica , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Cromatografia Líquida , Proteínas de Ligação a DNA/metabolismo , Análise de Dados , Genômica/métodos , Nucleossomos/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem
7.
Sci Adv ; 6(15): eaax2746, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284990

RESUMO

The histone demethylase LSD1 is deregulated in several tumors, including leukemias, providing the rationale for the clinical use of LSD1 inhibitors. In acute promyelocytic leukemia (APL), pharmacological doses of retinoic acid (RA) induce differentiation of APL cells, triggering degradation of the PML-RAR oncogene. APL cells are resistant to LSD1 inhibition or knockout, but targeting LSD1 sensitizes them to physiological doses of RA without altering of PML-RAR levels, and extends survival of leukemic mice upon RA treatment. The combination of RA with LSD1 inhibition (or knockout) is also effective in other non-APL, acute myeloid leukemia (AML) cells. Nonenzymatic activities of LSD1 are essential to block differentiation, while RA with targeting of LSD1 releases a differentiation gene expression program, not strictly dependent on changes in histone H3K4 methylation. Integration of proteomic/epigenomic/mutational studies showed that LSD1 inhibitors alter the recruitment of LSD1-containing complexes to chromatin, inhibiting the interaction between LSD1 and the transcription factor GFI1.


Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Histona Desmetilases/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Tretinoína/farmacologia , Catálise , Diferenciação Celular/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Células Tumorais Cultivadas
8.
Cell Rep ; 30(4): 1208-1222.e9, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995759

RESUMO

Protein arginine methyltransferase 1 (PRMT1) is overexpressed in various human cancers and linked to poor response to chemotherapy. Various PRMT1 inhibitors are currently under development; yet, we do not fully understand the mechanisms underpinning PRMT1 involvement in tumorigenesis and chemoresistance. Using mass spectrometry-based proteomics, we identified PRMT1 as regulator of arginine methylation in ovarian cancer cells treated with cisplatin. We showed that DNA-dependent protein kinase (DNA-PK) binds to and phosphorylates PRMT1 in response to cisplatin, inducing its chromatin recruitment and redirecting its enzymatic activity toward Arg3 of histone H4 (H4R3). On chromatin, the DNA-PK/PRMT1 axis induces senescence-associated secretory phenotype through H4R3me2a deposition at pro-inflammatory gene promoters. Finally, PRMT1 inhibition reduces the clonogenic growth of cancer cells exposed to low doses of cisplatin, sensitizing them to apoptosis. While unravelling the role of PRMT1 in response to genotoxic agents, our findings indicate the possibility of targeting PRMT1 to overcome chemoresistance in cancer.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Cromatina/metabolismo , Cisplatino/farmacologia , Proteína Quinase Ativada por DNA/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Arginina/metabolismo , Senescência Celular/genética , Imunoprecipitação da Cromatina , Cromatografia Líquida , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Proteína Quinase Ativada por DNA/genética , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Espectrometria de Massas , Metilação , NF-kappa B/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteoma/química , Proteoma/metabolismo , RNA-Seq , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Espectrometria de Massas em Tandem
9.
Nucleic Acids Res ; 45(21): 12195-12213, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981749

RESUMO

The integrated activity of cis-regulatory elements fine-tunes transcriptional programs of mammalian cells by recruiting cell type-specific as well as ubiquitous transcription factors (TFs). Despite their key role in modulating transcription, enhancers are still poorly characterized at the molecular level, and their limited DNA sequence conservation in evolution and variable distance from target genes make their unbiased identification challenging. The coexistence of high mono-methylation and low tri-methylation levels of lysine 4 of histone H3 is considered a signature of enhancers, but a comprehensive view of histone modifications associated to enhancers is still lacking. By combining chromatin immunoprecipitation (ChIP) with mass spectrometry, we investigated cis-regulatory regions in macrophages to comprehensively identify histone marks specifically associated with enhancers, and to profile their dynamics after transcriptional activation elicited by an inflammatory stimulation. The intersection of the proteomics data with ChIP-seq and RNA-seq analyses revealed the existence of novel subpopulations of enhancers, marked by specific histone modification signatures: specifically, H3K4me1/K36me2 marks transcribed enhancers, while H3K4me1/K36me3 and H3K4me1/K79me2 combinations mark distinct classes of intronic enhancers. Thus, our MS analysis of functionally distinct genomic regions revealed the combinatorial code of histone modifications, highlighting the potential of proteomics in addressing fundamental questions in epigenetics.


Assuntos
Cromatina/metabolismo , Código das Histonas , Macrófagos/metabolismo , Animais , Linhagem Celular , Elementos Facilitadores Genéticos , Genoma , Histonas/metabolismo , Íntrons , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Proteômica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...