Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732486

RESUMO

In alpine ecosystems, elevation broadly functions as a steep thermal gradient, with plant communities exposed to regular fluctuations in hot and cold temperatures. These conditions lead to selective filtering, potentially contributing to species-level variation in thermal tolerance and population-level genetic divergence. Few studies have explored the breadth of alpine plant thermal tolerances across a thermal gradient or the underlying genetic variation thereof. We measured photosystem heat (Tcrit-hot) and cold (Tcrit-cold) thresholds of ten Australian alpine species across elevation gradients and characterised their neutral genetic variation. To reveal the biogeographical drivers of present-day genetic signatures, we also reconstructed temporal changes in habitat suitability across potential distributional ranges. We found intraspecific variation in thermal thresholds, but this was not associated with elevation, nor underpinned by genetic differentiation on a local scale. Instead, regional population differentiation and considerable homozygosity within populations may, in part, be driven by distributional contractions, long-term persistence, and migrations following habitat suitability. Our habitat suitability models suggest that cool-climate-distributed alpine plants may be threatened by a warming climate. Yet, the observed wide thermal tolerances did not reflect this vulnerability. Conservation efforts should seek to understand variations in species-level thermal tolerance across alpine microclimates.

2.
J Phycol ; 59(1): 179-192, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36345151

RESUMO

Foundation seaweed species are experiencing widespread declines and localized extinctions due to increased instability of sea surface temperature. Characterizing temperature thresholds are useful for predicting patterns of change and identifying species most vulnerable to extremes. Existing methods for characterizing seaweed thermal tolerance produce diverse metrics and are often time-consuming, making comparisons between species and techniques difficult, hindering insight into global patterns of change. Using three kelp species, we adapted a high-throughput method - previously used in terrestrial plant thermal biology - for use on kelps. This method employs temperature-dependent fluorescence (T-F0 ) curves under heating or cooling regimes to determine the critical temperature (Tcrit ) of photosystem II (PSII), i.e., the breakpoint between slow and fast rise fluorescence response to changing temperature, enabling rapid assays of photosynthetic thermal tolerance using a standardized metric. This method enables characterization of Tcrit for up to 48 samples per two-hour assay, demonstrating the capacity of T-F0 curves for high-throughput assays of thermal tolerance. Temperature-dependent fluorescence curves and their derived metric, Tcrit , may offer a timely and powerful new method for the field of phycology, enabling characterization and comparison of photosynthetic thermal tolerance of seaweeds across many populations, species, and biomes.


Assuntos
Clorofila , Kelp , Kelp/metabolismo , Fotossíntese/fisiologia , Temperatura , Complexo de Proteína do Fotossistema II/metabolismo
3.
Ecol Evol ; 12(10): e9446, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311410

RESUMO

This paper reports on the design and evaluation of Field Studies in Functional Ecology (FSFE), a two-week intensive residential field course that enables students to master core content in functional ecology alongside skills that facilitate their transition from "student" to "scientist." We provide an overview of the course structure, showing how the constituent elements have been designed and refined over successive iterations of the course. We detail how FSFE students: (1) Work closely with discipline specialists to develop a small group project that tests an hypothesis to answer a genuine scientific question in the field; (2) Learn critical skills of data management and communication; and (3) Analyze, interpret, and present their results in the format of a scientific symposium. This process is repeated in an iterative "cognitive apprenticeship" model, supported by a series of workshops that name and explicitly instruct the students in "hard" and "soft" skills (e.g., statistics and teamwork, respectively) critically relevant for research and other careers. FSFE students develop a coherent and nuanced understanding of how to approach and execute ecological studies. The sophisticated knowledge and ecological research skills that they develop during the course is demonstrated through high-quality presentations and peer-reviewed publications in an open-access, student-led journal. We outline our course structure and evaluate its efficacy to show how this novel combination of field course elements allows students to gain maximum value from their educational journey, and to develop cognitive, affective, and reflective tools to help apply their skills as scientists.

4.
Oecologia ; 198(3): 593-603, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35129681

RESUMO

Phenotypic plasticity index (PI), the slope of reaction norm (K) and relative distances plasticity index (RDPI), the most commonly used estimators, have occasionally been found to generate different plasticity rankings between groups (species, populations, cultivars or genotypes). However, no effort has been made to determine how frequent this incongruence is, and the factors that influence the occurrence of the incongruence. To address these problems, we first proposed a conceptual framework and then tested the framework (its predictions) by reanalyzing 1248 sets of published data. Our framework reveals inherent conflicts between K and PI or RDPI when comparing plasticity between two groups, and the frequency of these conflicts increases with increasing inter-group initial trait difference and/or K values of the groups compared. More importantly, the estimators also affect the magnitude of the inter-group plasticity differences even when they do not change groups' plasticity rankings. The above-mentioned effects of plasticity estimators were confirmed by our empirical test using data from the literature, and the conflicts occur in 203 (16%) of the 1248 comparisons between K and indices, indicating that a considerable proportion of the comparative conclusions on plasticity in literature are estimator-dependent. The frequency of the conflicts is influenced by phylogenetic relatedness of the groups compared, being lower when comparing within relative to between species, but not by specific types of environments, traits and species. Our study indicates that care is needed to select estimator when comparing groups' plasticity, and that the conclusions in relevant literature should be treated with great caution.


Assuntos
Adaptação Fisiológica , Genótipo , Fenótipo , Filogenia
5.
Evol Appl ; 14(8): 1969-1979, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429742

RESUMO

There is an imperative for conservation practitioners to help biodiversity adapt to accelerating environmental change. Evolutionary biologists are well-positioned to inform the development of evidence-based management strategies that support the adaptive capacity of species and ecosystems. Conservation practitioners increasingly accept that management practices must accommodate rapid environmental change, but harbour concerns about how to apply recommended changes to their management contexts. Given the interest from both conservation practitioners and evolutionary biologists in adjusting management practices, we believe there is an opportunity to accelerate the required changes by promoting closer collaboration between these two groups. We highlight how evolutionary biologists can harness lessons from other disciplines about how to foster effective knowledge exchange to make a substantive contribution to the development of effective conservation practices. These lessons include the following: (1) recognizing why practitioners do and do not use scientific evidence; (2) building an evidence base that will influence management decisions; (3) translating theory into a format that conservation practitioners can use to inform management practices; and (4) developing strategies for effective knowledge exchange. Although efforts will be required on both sides, we believe there are rewards for both practitioners and evolutionary biologists, not least of which is fostering practices to help support the long-term persistence of species.

6.
New Phytol ; 232(3): 1212-1225, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34292598

RESUMO

The frequency and severity of heatwave events are increasing, exposing species to conditions beyond their physiological limits. Species respond to heatwaves in different ways, however it remains unclear if plants have the adaptive capacity to successfully respond to hotter and more frequent heatwaves. We exposed eight tree populations from two climate regions grown under cool and warm temperatures to repeated heatwave events of moderate (40°C) and extreme (46°C) severity to assess adaptive capacity to heatwaves. Leaf damage and maximum quantum efficiency of photosystem II (Fv /Fm ) were significantly impacted by heatwave severity and growth temperatures, respectively; populations from a warm-origin avoided damage under moderate heatwaves compared to those from a cool-origin, indicating a degree of local adaptation. We found that plasticity to heatwave severity and repeated heatwaves contributed to enhanced thermal tolerance and lower leaf temperatures, leading to greater thermal safety margins (thermal tolerance minus leaf temperature) in a second heatwave. Notably, while we show that adaptation and physiological plasticity are important factors affecting plant adaptive capacity to thermal stress, plasticity of thermal tolerances and thermal safety margins provides the opportunity for trees to persist among fluctuating heatwave exposures.


Assuntos
Folhas de Planta , Árvores , Aclimatação , Clima , Temperatura
7.
Glob Chang Biol ; 27(18): 4420-4434, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34117681

RESUMO

Conservation managers are under increasing pressure to make decisions about the allocation of finite resources to protect biodiversity under a changing climate. However, the impacts of climate and global change drivers on species are outpacing our capacity to collect the empirical data necessary to inform these decisions. This is particularly the case in the Australian Alps which have already undergone recent changes in climate and experienced more frequent large-scale bushfires. In lieu of empirical data, we use a structured expert elicitation method (the IDEA protocol) to estimate the change in abundance and distribution of nine vegetation groups and 89 Australian alpine and subalpine species by the year 2050. Experts predicted that most alpine vegetation communities would decline in extent by 2050; only woodlands and heathlands are predicted to increase in extent. Predicted species-level responses for alpine plants and animals were highly variable and uncertain. In general, alpine plants spanned the range of possible responses, with some expected to increase, decrease or not change in cover. By contrast, almost all animal species are predicted to decline or not change in abundance or elevation range; more species with water-centric life-cycles are expected to decline in abundance than other species. While long-term ecological data will always be the gold standard for informing the future of biodiversity, the method and outcomes outlined here provide a pragmatic and coherent basis upon which to start informing conservation policy and management in the face of rapid change and a paucity of data.


Assuntos
Mudança Climática , Ecossistema , Animais , Austrália , Biodiversidade , Plantas
8.
Conserv Physiol ; 9(1): coab023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959289

RESUMO

Global warming is affecting plant phenology, growth and reproduction in complex ways and is particularly apparent in vulnerable alpine environments. Warming affects reproductive and vegetative traits, as well as phenology, but seldom do studies assess these traits in concert and across the whole of a plant's life cycle, particularly in wild species. Thus, it is difficult to extrapolate from such effects to predictions about the persistence of species or their conservation and management. We assessed trait variation in response to warming in Oreomyrrhis eriopoda, an Australian native montane herb, in which populations vary in germination strategy (degree of dormancy) and growth characteristics as a function of ecological factors. Warming accelerated growth in the early stages of development, particularly for populations with non-dormant seed. The differences in growth disappeared at the transition to reproduction, when an accelerating effect on phenology emerged, to varying degrees depending on germination strategy. Overall, warming reduced flower and seed production and increased mortality, indicating a reduction in reproductive opportunities, particularly for populations with dormant seed. Developmental condition affected germination strategy of the next generation seed, leading to increased degree of dormancy and slowed germination rate. But there were no whole-scale shifts in strategy or total germination percent. Following through the life cycle reveals that warming will have some potentially positive effects (early growth rates) and some negative effects (reduced reproductive output). Ultimately, warming impacts will depend on how those effects play out in the field: early establishment and an accelerated trajectory to seed maturity may offset the tradeoff with overall seed production. Small differences among germination strategies likewise may cascade to larger effects, with important implications for persistence of species in the alpine landscape. Thus, to understand and manage the response of wild species to warming takes a whole-of-life perspective and attention to ecologically significant patterns of within-species variation.

9.
Conserv Physiol ; 9(1): coab009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859825

RESUMO

Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human-induced environmental change; (iii) human-wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions.

10.
Funct Plant Biol ; 48(6): 634-646, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33663678

RESUMO

Plant thermal tolerance is a crucial research area as the climate warms and extreme weather events become more frequent. Leaves exposed to temperature extremes have inhibited photosynthesis and will accumulate damage to PSII if tolerance thresholds are exceeded. Temperature-dependent changes in basal chlorophyll fluorescence (T-F0) can be used to identify the critical temperature at which PSII is inhibited. We developed and tested a high-throughput method for measuring the critical temperatures for PSII at low (CTMIN) and high (CTMAX) temperatures using a Maxi-Imaging fluorimeter and a thermoelectric Peltier plate heating/cooling system. We examined how experimental conditions of wet vs dry surfaces for leaves and heating/cooling rate, affect CTMIN and CTMAX across four species. CTMAX estimates were not different whether measured on wet or dry surfaces, but leaves were apparently less cold tolerant when on wet surfaces. Heating/cooling rate had a strong effect on both CTMAX and CTMIN that was species-specific. We discuss potential mechanisms for these results and recommend settings for researchers to use when measuring T-F0. The approach that we demonstrated here allows the high-throughput measurement of a valuable ecophysiological parameter that estimates the critical temperature thresholds of leaf photosynthetic performance in response to thermal extremes.


Assuntos
Temperatura Baixa , Temperatura Alta , Clorofila , Fluorescência , Folhas de Planta
11.
Plants (Basel) ; 10(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572051

RESUMO

Worldwide, shrub cover is increasing across alpine and tundra landscapes in response to warming ambient temperatures and declines in snowpack. With a changing climate, shrub encroachment may rely on recruitment from seed occurring outside of the optimum temperature range. We used a temperature gradient plate in order to determine the germination niche of 14 alpine shrub species. We then related the range in laboratory germination temperatures of each species to long-term average temperature conditions at: (1) the location of the seed accession site and (2) across each species geographic distribution. Seven of the species failed to germinate sufficiently to be included in the analyses. For the other species, the germination niche was broad, spanning a range in temperatures of up to 17 °C, despite very low germination rates in some species. Temperatures associated with the highest germination percentages were all above the range of temperatures present at each specific seed accession site. Optimum germination temperatures were consistently within or higher than the range of maximum temperatures modelled across the species' geographic distribution. Our results indicate that while some shrub species germinate well at high temperatures, others are apparently constrained by an inherent seed dormancy. Shrub encroachment in alpine areas will likely depend on conditions that affect seed germination at the microsite-scale, despite overall conditions becoming more suitable for shrubs at high elevations.

12.
New Phytol ; 229(5): 2497-2513, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33124040

RESUMO

Understanding plant thermal tolerance is fundamental to predicting impacts of extreme temperature events that are increasing in frequency and intensity across the globe. Extremes, not averages, drive species evolution, determine survival and increase crop performance. To better prioritize agricultural and natural systems research, it is crucial to evaluate how researchers are assessing the capacity of plants to tolerate extreme events. We conducted a systematic review to determine how plant thermal tolerance research is distributed across wild and domesticated plants, growth forms and biomes, and to identify crucial knowledge gaps. Our review shows that most thermal tolerance research examines cold tolerance of cultivated species; c. 5% of articles consider both heat and cold tolerance. Plants of extreme environments are understudied, and techniques widely applied in cultivated systems are largely unused in natural systems. Lastly, we find that lack of standardized methods and metrics compromises the potential for mechanistic insight. Our review provides an entry point for those new to the methods used in plant thermal tolerance research and bridges often disparate ecological and agricultural perspectives for the more experienced. We present a considered agenda of thermal tolerance research priorities to stimulate efficient, reliable and repeatable research across the spectrum of plant thermal tolerance.


Assuntos
Temperatura Baixa , Temperatura Alta , Mudança Climática , Ecossistema , Fotossíntese , Temperatura
13.
New Phytol ; 229(6): 3573-3586, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205452

RESUMO

Assumptions about the germination ecology of alpine plants are presently based on individual species and local studies. A current challenge is to synthesise, at the global level, the alpine seed ecological spectrum. We performed a meta-analysis of primary data from laboratory experiments conducted across four continents (excluding the tropics) and 661 species, to estimate the influence of six environmental cues on germination proportion, mean germination time and germination synchrony; accounting for seed morphology (mass, embryo : seed ratio) and phylogeny. Most alpine plants show physiological seed dormancy, a strong need for cold stratification, warm-cued germination and positive germination responses to light and alternating temperatures. Species restricted to the alpine belt have a higher preference for warm temperatures and a stronger response to cold stratification than species whose distribution extends also below the treeline. Seed mass, embryo size and phylogeny have strong constraining effects on germination responses to the environment. Globally, overwintering and warm temperatures are key drivers of germination in alpine habitats. The interplay between germination physiology and seed morphological traits further reflects pressures to avoid frost or drought stress. Our results indicate the convergence, at the global level, of the seed germination patterns of alpine species.


Assuntos
Germinação , Sementes , Dormência de Plantas , Plantas , Temperatura
14.
Conserv Physiol ; 8(1): coaa016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274063

RESUMO

Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users.

15.
Philos Trans R Soc Lond B Biol Sci ; 374(1768): 20180185, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30966967

RESUMO

Phenotypic plasticity is frequently assumed to be an adaptive mechanism by which organisms cope with rapid changes in their environment, such as shifts in temperature regimes owing to climate change. However, despite this adaptive assumption, the nature of selection on plasticity within populations is still poorly documented. Here, we performed a systematic review and meta-analysis of estimates of selection on thermal plasticity. Although there is a large literature on thermal plasticity, we found very few studies that estimated coefficients of selection on measures of plasticity. Those that did do not provide strong support for selection on plasticity, with the majority of estimates of directional selection on plasticity being weak and non-significant, and no evidence for selection on plasticity overall. Although further estimates are clearly needed before general conclusions can be drawn, at present there is not clear empirical support for any assumption that plasticity in response to temperature is under selection. We present a multivariate mixed model approach for robust estimation of selection on plasticity and demonstrate how it can be implemented. Finally, we highlight the need to consider the environments, traits and conditions under which plasticity is (or is not) likely to be under selection, if we are to understand phenotypic responses to rapid environmental change. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Meio Ambiente , Temperatura Alta , Características de História de Vida , Seleção Genética , Modelos Biológicos , Fenótipo
16.
New Phytol ; 222(3): 1235-1241, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30632169

RESUMO

Contents Summary 1235 I. Introduction 1235 II. The many shapes of phenotypic plasticity 1236 III. Random regression mixed model framework 1237 IV. Conclusions 1240 Acknowledgements 1240 References 1240 SUMMARY: Plant biology is experiencing a renewed interest in the mechanistic underpinnings and evolution of phenotypic plasticity that calls for a re-evaluation of how we analyse phenotypic responses to a rapidly changing climate. We suggest that dissecting plant plasticity in response to increasing temperature needs an approach that can represent plasticity over multiple environments, and considers both population-level responses and the variation between genotypes in their response. Here, we outline how a random regression mixed model framework can be applied to plastic traits that show linear or nonlinear responses to temperature. Random regressions provide a powerful and efficient means of characterising plasticity and its variation. Although they have been used widely in other fields, they have only recently been implemented in plant evolutionary ecology. We outline their structure and provide an example tutorial of their implementation.


Assuntos
Adaptação Fisiológica , Mudança Climática , Plantas/anatomia & histologia , Modelos Biológicos , Análise de Regressão , Temperatura
17.
Oecologia ; 189(2): 407-419, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30604086

RESUMO

Plant establishment and subsequent persistence are strongly influenced by germination strategy, especially in temporally and spatially heterogeneous environments. Germination strategy determines the plant's ability to synchronise germination timing and seedling emergence to a favourable growing season and thus variation in germination strategy within species may be key to persistence under more extreme and variable future climates. However, the determinants of variation in germination strategy are not well resolved. To understand the variation of germination strategy and the climate drivers, we assessed seed traits, germination patterns, and seedling establishment traits of Oreomyrrhis eriopoda from 29 populations across its range. Germination patterns were then analysed against climate data to determine the strongest climate correlates influencing the germination strategy. Oreomyrrhis eriopoda exhibits a striking range of germination strategies among populations: varying from immediate to staggered, postponed, and postponed-deep. Seeds from regions with lower temperature variability were more likely to exhibit an immediate germination strategy; however, those patterns depended on the timescale of climatic assessment. In addition, we show that these strategy differences extend to seedling establishment traits: autumn seedlings (from populations with an immediate or staggered germination strategy) exhibited a higher leaf production rate than spring seedlings (of staggered or postponed strategy). Our results demonstrate not only substantial within-species variation in germination strategy across the species distribution range, but also that this variation correlates with environmental drivers. Given that these differences also extend to establishment traits, they may reflect a critical mechanism for persistence in changing climate.


Assuntos
Germinação , Plântula , Estações do Ano , Sementes , Temperatura
18.
New Phytol ; 221(4): 1764-1775, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30269352

RESUMO

Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology.


Assuntos
Germinação/fisiologia , Dispersão de Sementes/fisiologia , Sementes/fisiologia , Biodiversidade , Conservação dos Recursos Naturais , Bases de Dados Factuais , Ecossistema , Plântula/fisiologia
19.
Plant Cell Environ ; 42(5): 1747-1757, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30512188

RESUMO

We investigated the role of three autoregulation of nodulation (AON) genes in regulating of root and shoot phenotypes when responding to changing nitrogen availability in the model legume, Medicago truncatula. These genes, RDN1-1 (ROOT DETERMINED NODULATION1-1), SUNN (SUPER NUMERIC NODULES), and LSS (LIKE SUNN SUPERNODULAOR), act in a systemic signalling pathway that limits nodule numbers. This pathway is also influenced by nitrogen availability, but it is not well known if AON genes control root and shoot phenotypes other than nodule numbers in response to nitrogen. We conducted a controlled glasshouse experiment to compare root and shoot phenotypes of mutants and wild type plants treated with four nitrate concentrations. All AON mutants showed altered rhizobia-independent phenotypes, including biomass allocation, lateral root length, lateral root density, and root length ratio. In response to nitrogen, uninoculated AON mutants were less plastic than the wild type in controlling root mass ratio, root length ratio, and lateral root length. This suggests that AON genes control nodulation-independent root architecture phenotypes in response to nitrogen. The phenotypic differences between wild type and AON mutants were exacerbated by the presence of nodules, pointing to resource competition as an additional mechanism affecting root and shoot responses to nitrogen.


Assuntos
Medicago truncatula/genética , Nitrogênio/metabolismo , Nodulação/genética , Transdução de Sinais/genética , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Medicago truncatula/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/metabolismo , Rhizobium , Nódulos Radiculares de Plantas/genética , Simbiose
20.
Elife ; 72018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29685183

RESUMO

As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration.


Assuntos
Variação Biológica da População , Mudança Climática , Recuperação e Remediação Ambiental/métodos , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Variação Genética , Aclimatação , Adaptação Fisiológica , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...