Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Database (Oxford) ; 20242024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776380

RESUMO

Natural products play a pivotal role in drug discovery, and the richness of natural products, albeit significantly influenced by various environmental factors, is predominantly determined by intrinsic genetics of a series of enzymatic reactions and produced as secondary metabolites of organisms. Heretofore, few natural product-related databases take the chemical content into consideration as a prominent property. To gain unique insights into the quantitative diversity of natural products, we have developed the first TerPenoids database embedded with Content information (TPCN) with features such as compound browsing, structural search, scaffold analysis, similarity analysis and data download. This database can be accessed through a web-based computational toolkit available at http://www.tpcn.pro/. By conducting meticulous manual searches and analyzing over 10 000 reference papers, the TPCN database has successfully integrated 6383 terpenoids obtained from 1254 distinct plant species. The database encompasses exhaustive details including isolation parts, comprehensive molecule structures, chemical abstracts service registry number (CAS number) and 7508 content descriptions. The TPCN database accentuates both the qualitative and quantitative dimensions as invaluable phenotypic characteristics of natural products that have undergone genetic evolution. By acting as an indispensable criterion, the TPCN database facilitates the discovery of drug alternatives with high content and the selection of high-yield medicinal plant species or phylogenetic alternatives, thereby fostering sustainable, cost-effective and environmentally friendly drug discovery in pharmaceutical farming. Database URL: http://www.tpcn.pro/.


Assuntos
Terpenos , Terpenos/metabolismo , Terpenos/química , Bases de Dados de Compostos Químicos , Bases de Dados Factuais
2.
RSC Adv ; 14(19): 13361-13366, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38689826

RESUMO

A self-powered photodetector (PD) based on n-type ZnO/p-type small-molecule copper(ii) phthalocyanine (CuPc) inorganic/organic heterojunction film deposited on FTO substrate was constructed by simple solution spin-coating and thermal evaporation technology. The designed heterojunction device exhibits typical photoresponse behavior under zero bias, indicating that the device possesses a self-powered characteristic. This may benefit from the formation of a built-in electric field in the heterojunction, which can effectively separate electron-hole pairs. Specifically, the optimal performances of the device appear at a wavelength of 365 nm and light intensity of 0.03 mW cm-2, achieving on/off ratio of ∼245.88 (29.88), responsivity (Rp) of ∼227.11 mA W-1 (0.39 mA W-1), detectivity (D*) of ∼7.63 × 1011 Jones (∼7.53 × 109 Jones) and EQE of ∼77.23% (0.14%) at +2 V (0 V) bias voltage. In addition, the device has potential application in weak light detection. Therefore, the construction of inorganic/organic heterojunctions may provide a feasible strategy for the development of high-performance, self-powered and wavelength-selective PDs.

3.
Nutrients ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474716

RESUMO

BACKGROUND: The milk fat globule membrane (MFGM) is a thin film that exists within the milk emulsion, suspended on the surface of milk fat globules, and comprises a diverse array of bioactive components. Recent advancements in MFGM research have sparked a growing interest in its biological characteristics and health-related functions. Thorough exploration and utilization of MFGM as a significant bioactive constituent in milk emulsion can profoundly impact human health in a positive manner. Scope and approach: This review comprehensively examines the current progress in understanding the structure, composition, physicochemical properties, methods of separation and purification, and biological activity of MFGM. Additionally, it underscores the vast potential of MFGM in the development of additives and drug delivery systems, with a particular focus on harnessing the surface activity and stability of proteins and phospholipids present on the MFGM for the production of natural emulsifiers and drug encapsulation materials. KEY FINDINGS AND CONCLUSIONS: MFGM harbors numerous active substances that possess diverse physiological functions, including the promotion of digestion, maintenance of the intestinal mucosal barrier, and facilitation of nerve development. Typically employed as a dietary supplement in infant formula, MFGM's exceptional surface activity has propelled its advancement toward becoming a natural emulsifier or encapsulation material. This surface activity is primarily derived from the amphiphilicity of polar lipids and the stability exhibited by highly glycosylated proteins.


Assuntos
Glicolipídeos , Glicoproteínas , Lactente , Humanos , Emulsões , Glicolipídeos/química , Glicoproteínas/química , Proteínas do Leite/química , Gotículas Lipídicas , Emulsificantes
4.
Heliyon ; 10(1): e23691, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192771

RESUMO

It is long observed that females tend to live longer than males in nearly every country. However, the underlying mechanism remains elusive. In this study, we discovered that genetic associations with longevity are on average stronger in females than in males through bio-demographic analyses of genome-wide association studies (GWAS) dataset of 2178 centenarians and 2299 middle-age controls of Chinese Longitudinal Healthy Longevity Study (CLHLS). This discovery is replicated across North and South regions of China, and is further confirmed by North-South discovery/replication analyses of different and independent datasets of Chinese healthy aging candidate genes with CLHLS participants who are not in CLHLS GWAS, including 2972 centenarians and 1992 middle-age controls. Our polygenic risk score analyses of eight exclusive groups of sex-specific genes, analyses of sex-specific and not-sex-specific individual genes, and Genome-wide Complex Trait Analysis using all SNPs all reconfirm that genetic associations with longevity are on average stronger in females than in males. Our discovery/replication analyses are based on genetic datasets of in total 5150 centenarians and compatible middle-age controls, which comprises the worldwide largest sample of centenarians. The present study's findings may partially explain the well-known male-female health-survival paradox and suggest that genetic variants may be associated with different reactions between males and females to the same vaccine, drug treatment and/or nutritional intervention. Thus, our findings provide evidence to steer away from traditional view that "one-size-fits-all" for clinical interventions, and to consider sex differences for improving healthcare efficiency. We suggest future investigations focusing on effects of interactions between sex-specific genetic variants and environment on longevity as well as biological function.

5.
Funct Integr Genomics ; 23(4): 294, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688632

RESUMO

In the field of biodosimetry, the current accepted method for evaluating radiation dose fails to meet the need of rapid, large-scale screening, and most RNA marker-related studies of biodosimetry are concentrating on a single type of ray, while some other potential factors, such as trauma and burns, have not been covered. Microarray datasets that contain the data of human peripheral blood samples exposed to X-ray, neutron, and γ-ray radiation were obtained from the GEO database. Totally, 33 multi-type ray co-induced genes were obtained at first from the differentially expressed genes (DEGs) and key genes identified by weighted gene co-expression network analysis (WGCNA), and these genes were mainly enriched in DNA damage, cellular apoptosis, and p53 signaling pathway. Following transcriptome sequencing of blood samples from 11 healthy volunteers, 13 patients with severe burns, and 37 patients with severe trauma, 6635 trauma-related DEGs and 7703 burn-related DEGs were obtained. Through the exclusion method, a total of 12 radiation-specific genes independent of trauma and burns were identified. ROC curve analysis revealed that the DDB2 gene performed the best in diagnosis of all three types of ray radiation, while correlation analysis showed that the MDM2 gene was the best in assessment of radiation dose. The results of multiple-linear regression analysis indicated that such analysis could improve the accuracy in assessment of radiation dose. Moreover, the DDB2 and MDM2 genes remained effective in radiation diagnosis and assessment of radiation dose in an external dataset. In general, the study brings new insights into radiation biodosimetry.


Assuntos
Queimaduras , Humanos , Queimaduras/genética , Raios gama , Apoptose , Dano ao DNA , Doses de Radiação , Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas c-mdm2/genética
6.
Cell Genom ; 3(8): 100361, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601966

RESUMO

The China Kadoorie Biobank (CKB) is a population-based prospective cohort of >512,000 adults recruited from 2004 to 2008 from 10 geographically diverse regions across China. Detailed data from questionnaires and physical measurements were collected at baseline, with additional measurements at three resurveys involving ∼5% of surviving participants. Analyses of genome-wide genotyping, for >100,000 participants using custom-designed Axiom arrays, reveal extensive relatedness, recent consanguinity, and signatures reflecting large-scale population movements from recent Chinese history. Systematic genome-wide association studies of incident disease, captured through electronic linkage to death and disease registries and to the national health insurance system, replicate established disease loci and identify 14 novel disease associations. Together with studies of candidate drug targets and disease risk factors and contributions to international genetics consortia, these demonstrate the breadth, depth, and quality of the CKB data. Ongoing high-throughput omics assays of collected biosamples and planned whole-genome sequencing will further enhance the scientific value of this biobank.

7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 939-944, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37551459

RESUMO

OBJECTIVE: To investigate the therapeutic effect of targeted drug-loaded nanoparticles modified by transferrin receptor monoclonal antibody (TfR mAb) on acute leukemia and its potential anti-tumor mechanism. METHODS: Nanoparticles drug delivery system, which was composed of poly (lactic-co-glycolic acid), poly-l-lysine, polyethylene glycol, TfR mAb (TfR mAb-PLGA-PLL-PEG)-daunorubicin (DNR), was first synthesized. After drug intervention, the intracellular accumulation in leukemia HL60 cells was observed under a fluorescent microscope and concentration of DNR was determined by flow cytometry (FCM). Meanwhile, cell apoptosis rate was measured by FCM and the expression levels of apoptosis related protein Cleaved-caspase 3 was determined by Western blot. RESULTS: Under an inverted fluorescent microscope, intracellular accumulation of DNR autofluorescence in HL60 cells was observed in both TfR mAb-PLGA-PLL-PEG-DNR group and DNR group. FCM analysis showed that the intracellular concentration of DNR in TfR mAb-PLGA-PLL-PEG-DNR group was higher than that in DNR group(P<0.05). The apoptotic rate of HL60 cells in TfR mAb-PLGA-PLL-PEG-DNR group was higher than that of DNR group(P<0.05). Moreover, the expression levels of apoptosis-related protein Cleaved-caspase 3 in TfR mAb-PLGA-PLL-PEG-DNR group was significantly higher than that in DNR group(P<0.05). CONCLUSION: TfR mAb-PLGA-PLL-PEG nanoparticle drug delivery system can target chemotherapy drugs to leukemia cells and enhance anticancer ability through apoptotic pathway.

8.
Adv Sci (Weinh) ; 10(28): e2300050, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548643

RESUMO

The skin is the largest organ in the human body. Various skin environments on its surface constitutes a complex ecosystem. One of the characteristics of the skin micro-ecosystem is low biomass, which greatly limits a comprehensive identification of the microbial species through sequencing. In this study, deep-shotgun sequencing (average 21.5 Gigabyte (Gb)) from 450 facial samples and publicly available skin metagenomic datasets of 2069 samples to assemble a Unified Human Skin Genome (UHSG) catalog is integrated. The UHSG encompasses 813 prokaryotic species derived from 5779 metagenome-assembled genomes, among which 470 are novel species covering 20 phyla with 1385 novel assembled genomes. Based on the UHSG, the core functions of the skin microbiome are described and the differences in amino acid metabolism, carbohydrate metabolism, and drug resistance functions among different phyla are identified. Furthermore, analysis of secondary metabolites of the near-complete genomes further find 1220 putative novel secondary metabolites, several of which are found in previously unknown genomes. Single nucleotide variant (SNV) reveals a possible skin protection mechanism: the negative selection process of the skin environment to conditional pathogens. UHSG offers a convenient reference database that will facilitate a more in-depth understanding of the role of skin microorganisms in the skin.

9.
Acta Biomater ; 168: 580-592, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451659

RESUMO

Healing bacterial chronic wounds caused by hyperglycemia is of great significance to protect the physical and mental health of diabetic patients. In this context, emerging chemodynamic therapy (CDT) and photothermal therapy (PTT) with broad antibacterial spectra and high spatiotemporal controllability have flourished. However, CDT was challenged by the near-neutral pH and inadequate H2O2 surrounding the chronic wound site, while PTT showed overheating-triggered side effects (e.g., damaging the normal tissue) and poor effects on thermotolerant bacterial biofilms. Therefore, we engineered an all-in-one glucose-responsive photothermal nanozyme, GOX/MPDA/Fe@CDs, consisting of glucose oxidase (GOX), Fe-doped carbon dots (Fe@CDs), and mesoporous polydopamine (MPDA), to efficiently treat chronic diabetic wound bacterial infections and eradicate biofilms without impacting the surrounding normal tissues. Specifically, GOX/MPDA/Fe@CDs produced a local temperature (∼ 45.0°C) to enhance the permeability of the pathogenic bacterium and its biofilm upon near-infrared (NIR) 808 nm laser irradiation, which was seized to initiate endogenous high blood glucose to activate the catalytic activity of GOX on the GOX/MPDA/Fe@CD surface to achieve the simultaneous self-supplying of H2O2 and H+, cascade catalyzing •OH production via a subsequent peroxidase-mimetic activity-induced Fenton/Fenton-like reaction. As such, the in vivo diabetic wound infected with methicillin-resistant Staphylococcus aureus was effectively healed after 12.0 days of treatment. This work was expected to provide an innovative approach to the clinical treatment of bacterially infected diabetic chronic wounds. STATEMENT OF SIGNIFICANCE: An all-in-one glucose-responsive photothermal nanozyme GOX/MPDA/Fe@CDs was constructed. Cascade nanozyme GOX/MPDA/Fe@CDs self-supply H2O2 and H+ to break H2O2 and pH limits to fight bacterial infections. Synergistic chemotherapy and photothermal therapy with nanozyme GOX/MPDA/Fe@CDs accelerates healing of biofilm-infected diabetic wounds.


Assuntos
Diabetes Mellitus , Hiperglicemia , Staphylococcus aureus Resistente à Meticilina , Humanos , Peróxido de Hidrogênio/farmacologia , Terapia Fototérmica , Antibacterianos/farmacologia , Carbono/farmacologia , Glucose , Glucose Oxidase/farmacologia , Nanotecnologia
10.
Sci Rep ; 13(1): 5127, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991009

RESUMO

Although recent studies have revealed the association between the human microbiome especially gut microbiota and longevity, their causality remains unclear. Here, we assess the causal relationships between the human microbiome (gut and oral microbiota) and longevity, by leveraging bidirectional two-sample Mendelian randomization (MR) analyses based on genome-wide association studies (GWAS) summary statistics of the gut and oral microbiome from the 4D-SZ cohort and longevity from the CLHLS cohort. We found that some disease-protected gut microbiota such as Coriobacteriaceae and Oxalobacter as well as the probiotic Lactobacillus amylovorus were related to increased odds of longevity, whereas the other gut microbiota such as colorectal cancer pathogen Fusobacterium nucleatum, Coprococcus, Streptococcus, Lactobacillus, and Neisseria were negatively associated with longevity. The reverse MR analysis further revealed genetically longevous individuals tended to have higher abundances of Prevotella and Paraprevotella but lower abundances of Bacteroides and Fusobacterium species. Few overlaps of gut microbiota-longevity interactions were identified across different populations. We also identified abundant links between the oral microbiome and longevity. The additional analysis suggested that centenarians genetically had a lower gut microbial diversity, but no difference in oral microbiota. Our findings strongly implicate these bacteria to play a role in human longevity and underscore the relocation of commensal microbes among different body sites that would need to be monitored for long and healthy life.


Assuntos
Longevidade , Microbiota , Idoso de 80 Anos ou mais , Humanos , Longevidade/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Lactobacillus acidophilus
11.
Diagnostics (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36900040

RESUMO

Automatic segmentation of polyps during colonoscopy can help doctors accurately find the polyp area and remove abnormal tissues in time to reduce the possibility of polyps transforming into cancer. However, the current polyp segmentation research still has the following problems: blurry polyp boundaries, multi-scale adaptability of polyps, and close resemblances between polyps and nearby normal tissues. To tackle these issues, this paper proposes a dual boundary-guided attention exploration network (DBE-Net) for polyp segmentation. Firstly, we propose a dual boundary-guided attention exploration module to solve the boundary-blurring problem. This module uses a coarse-to-fine strategy to progressively approximate the real polyp boundary. Secondly, a multi-scale context aggregation enhancement module is introduced to accommodate the multi-scale variation of polyps. Finally, we propose a low-level detail enhancement module, which can extract more low-level details and promote the performance of the overall network. Extensive experiments on five polyp segmentation benchmark datasets show that our method achieves superior performance and stronger generalization ability than state-of-the-art methods. Especially for CVC-ColonDB and ETIS, two challenging datasets among the five datasets, our method achieves excellent results of 82.4% and 80.6% in terms of mDice (mean dice similarity coefficient) and improves by 5.1% and 5.9% compared to the state-of-the-art methods.

12.
Environ Sci Technol ; 57(4): 1680-1691, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36642941

RESUMO

Precise and reliable onsite detection of methyl mercaptan (CH3SH) is of great significance for environmental surveillance. Here, we synthesized a novel blue fluorescence nanozyme CeO2@TPE with high peroxidase-like activity by employing aggregation-induced emission (AIE) tetraphenylethene (TPE) to embed into hollow CeO2 nanospheres. In the presence of ethanol oxidase (AOX) and o-phenylenediamine (OPD), we engineered an enzymatic cascade activation ratiometric fluorescence-colorimetric dual-mode system AOX/CeO2@TPE + OPD toward CH3SH. In this design, CH3SH initiated AOX catalytic activity to convert it into H2O2 for activating the peroxidase-like activity of CeO2@TPE, producing •OH for oxidizing the naked-eye colorless OPD into deep yellow 2,3-diaminophenazine (DAP) with an absorption enhancement at ∼425 nm, companied by a new emission peak at ∼550 nm to match with the intrinsic emission at ∼441 nm for observing ratiometric fluorescence response, enabling a ratiometric fluorescence-colorimetric dual-mode analysis. Interestingly, both the ratiometric fluorescence and colorimetric signals could be gathered for being converted into the hue parameter on a smartphone-based sensor, achieving the onsite visual fluorescence-colorimetric dual-mode detection of CH3SH in real environmental media with acceptable results. This study gave a novel insight into designing target-responsive enzymatic cascade activation system-based efficient and reliable dual-mode point-of-care sensors for safeguarding environmental health.


Assuntos
Colorimetria , Smartphone , Colorimetria/métodos , Peróxido de Hidrogênio , Peroxidases , Compostos de Sulfidrila , Limite de Detecção
13.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679769

RESUMO

Specular Reflections often exist in the endoscopic image, which not only hurts many computer vision algorithms but also seriously interferes with the observation and judgment of the surgeon. The information behind the recovery specular reflection areas is a necessary pre-processing step in medical image analysis and application. The existing highlight detection method is usually only suitable for medium-brightness images. The existing highlight removal method is only applicable to images without large specular regions, when dealing with high-resolution medical images with complex texture information, not only does it have a poor recovery effect, but the algorithm operation efficiency is also low. To overcome these limitations, this paper proposes a specular reflection detection and removal method for endoscopic images based on brightness classification. It can effectively detect the specular regions in endoscopic images of different brightness and can improve the operating efficiency of the algorithm while restoring the texture structure information of the high-resolution image. In addition to achieving image brightness classification and enhancing the brightness component of low-brightness images, this method also includes two new steps: In the highlight detection phase, the adaptive threshold function that changes with the brightness of the image is used to detect absolute highlights. During the highlight recovery phase, the priority function of the exemplar-based image inpainting algorithm was modified to ensure reasonable and correct repairs. At the same time, local priority computing and adaptive local search strategies were used to improve algorithm efficiency and reduce error matching. The experimental results show that compared with the other state-of-the-art, our method shows better performance in terms of qualitative and quantitative evaluations, and the algorithm efficiency is greatly improved when processing high-resolution endoscopy images.


Assuntos
Algoritmos , Endoscopia , Processamento de Imagem Assistida por Computador/métodos
14.
Cell Rep Med ; 3(12): 100847, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36493776

RESUMO

Recent technological advances in multi-omics and bioinformatics provide an opportunity to develop precision health assessments, which require big data and relevant bioinformatic methods. Here we collect multi-omics data from 4,277 individuals. We calculate the correlations between pairwise features from cross-sectional data and then generate 11 biological functional modules (BFMs) in males and 12 BFMs in females using a community detection algorithm. Using the features in the BFM associated with cardiometabolic health, carotid plaques can be predicted accurately in an independent dataset. We developed a model by comparing individual data with the health baseline in BFMs to assess health status (BFM-ash). Then we apply the model to chronic patients and modify the BFM-ash model to assess the effects of consuming grape seed extract as a dietary supplement. Finally, anomalous BFMs are identified for each subject. Our BFMs and BFM-ash model have huge prospects for application in precision health assessment.


Assuntos
Multiômica , Medicina de Precisão , Feminino , Humanos , Medicina de Precisão/métodos , Estudos Transversais
15.
Anal Chem ; 94(48): 16796-16802, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36395421

RESUMO

The development of facile, reliable, and accurate assays for pathogenic bacteria is critical to environmental pollution surveillance, traceability analysis, prevention, and control. Here, we proposed a rolling circle amplification (RCA) strategy-driven visual photothermal smartphone-based biosensor for achieving highly sensitive monitoring of Escherichia coli (E. coli) in environmental media. In this design, E. coli could specifically bind with its recognition aptamer for initiating the RCA process on a magnetic bead (MB). Owing to the cleaving of UV irradiation toward photoresponsive DNA on MB, the RCA products were released to further hybridize with near-infrared excited CuxS-modified DNA probes. As a result, the photothermal signal was enhanced by RCA, while the background was decreased by UV irradiation and magnetic separation. The correspondingly generated photothermal signals were unambiguously recorded on a smartphone, allowing for an E. coli assay with a low detection limit of 1.8 CFU/mL among the broad linear range from 5.0 to 5.0 × 105 CFU/mL. Significantly, this proposed biosensor has been successfully applied to monitor the fouling levels of E. coli in spring water samples with acceptable results. This study holds great prospects by integrating a RCA-driven photothermal amplification strategy into a smartphone to develop accurate, reliable, and efficient analytical platforms against pathogenic bacteria pollutions for safeguarding environmental health.


Assuntos
Técnicas Biossensoriais , Infecções por Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , DNA/genética , Fenômenos Magnéticos , Limite de Detecção
16.
Nanomaterials (Basel) ; 12(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36145029

RESUMO

Recycling waste biomass into valuable products (e.g., nanomaterials) is of considerable theoretical and practical significance to achieve future sustainable development. Here, we propose a one-pot hydrothermal synthesis route to convert waste tobacco stems into biomass-based N, S-codoped carbon dots (C-dots) with the assistance of carbon black. Unlike most of the previously reported luminescent C-dots, these biomass-based C-dots showed a satisfactory stability, as well as an excitation-independent fluorescence emission at ~520 nm. Furthermore, they demonstrated a pH-dependent fluorescence emission ability, offering a scaffold to design pH-responsive assays. Moreover, these as-synthesized biomass-based C-dots exhibited a fluorescence response ability toward tetracycline antibiotics (TCs, e.g., TC, CTC, and OTC) through the inner filter effect (IFE), thereby allowing for the establishment a smart analytical platform to sensitively and selectively monitor residual TCs in real environmental water samples. In this study, we explored the conversion of waste tobacco stems into sustainable biomass-based C-dots to develop simple, efficient, label-free, reliable, low-cost, and eco-friendly analytical platforms for environmental pollution traceability analysis, which might provide a novel insight to resolve the ecological and environmental issues derived from waste tobacco stems.

17.
Mol Neurobiol ; 59(11): 6790-6804, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36040555

RESUMO

Numerous studies have investigated the risk factors of Alzheimer's disease (AD); however, AD-risk factors related miRNAs were rarely reported. In this study, AD-risk factor related miRNAs of 105 Chinese individuals (45 AD patients and 60 cognitively normal controls) were investigated. The results showed that Hsa-miR-185-5p, Hsa-miR-20a-5p, and Hsa-miR-497-5p were related to AD and education, Hsa-miR-185-5p, Hsa-miR-181c-5p, Hsa-miR-664a-3p, Hsa-miR-27a-3p, Hsa-miR-451a, and Hsa-miR-320a were related to AD and depression. Target prediction of above miRNAs showed that these miRNAs were involved in the generation and clearance of amyloid-beta (Aß), important molecules related to cognition, and disease-activated microglia response to AD. It is worth noting that Hsa-miR-185-5p was related to both education and depression, whose decreased expression pattern in AD patients was alleviated by education and enhanced by depression, and participates in Aß generation and accumulation. Our results indicated that certain education and depression factors can contribute to AD progression by modulating miRNA expression, implying that preventive interventions might alter AD progression in Chinese patients.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , China , Cognição , Humanos , MicroRNAs/metabolismo
18.
J Agric Food Chem ; 70(30): 9577-9583, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876793

RESUMO

The development of efficient, economic, reliable, and accurate monitoring of hypochlorite (ClO-) in food matrices is in great demand for food safety assessment, particularly during its massive use against the COVID-19 epidemic. Here, we prepared an aggregation-induced emission (AIE) fluorophore tetraphenylethylene (TPE)-incorporated curcumin-based hybrid ratiometric fluorescence nanoprobe (Curcumin/TPE@HyNPs) through amphiphilic phospholipid polymer-powered nanoprecipitation, which exhibited a fast, highly sensitive, and selective response to the residual ClO- in real food matrices. Because of the inner filter effect (IFE) from curcumin toward TPE inside the nanoprobe, the bright fluorescence of TPE aggregation at ∼437 nm was effectively quenched, along with an enhanced fluorescence of curcumin at ∼478 nm. Once there was a ClO- residue in food matrices, ClO- triggered the oxidation of o-methoxyphenol inside curcumin and led to the almost complete absorption collapse, thereby terminating curcumin fluorescence at ∼478 nm and the IFE process. Accordingly, the fluorescence of TPE at ∼437 nm was recovered. In this case, a ratiometric fluorescent response of Curcumin/TPE@HyNPs toward the residual ClO- in food matrices (e.g., milk) was proposed with a low detection limit of 0.353 µM and a rapid response time of 140.0 s. Notably, the phospholipid polymer as the protection layer effectively reduced/evaded the nonspecific binding of signal reporters inside the nanoprobe, facilitating it to directly monitor the residual ClO- in real food matrices. This work provided a novel approach to utilize the unconventional AIE luminophors for constructing the efficient and reliable early warning mechanisms toward various food contaminants.


Assuntos
COVID-19 , Curcumina , Corantes Fluorescentes/química , Humanos , Ácido Hipocloroso/química , Fosfolipídeos , Polímeros
19.
Aging Cell ; 21(7): e13654, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754110

RESUMO

Longevity was influenced by many complex diseases and traits. However, the relationships between human longevity and genetic risks of complex diseases were not broadly studied. Here, we constructed polygenic risk scores (PRSs) for 225 complex diseases/traits and evaluated their relationships with human longevity in a cohort with 2178 centenarians and 2299 middle-aged individuals. Lower genetic risks of stroke and hypotension were observed in centenarians, while higher genetic risks of schizophrenia (SCZ) and type 2 diabetes (T2D) were detected in long-lived individuals. We further stratified PRSs into cell-type groups and significance-level groups. The results showed that the immune component of SCZ genetic risk was positively linked to longevity, and the renal component of T2D genetic risk was the most deleterious. Additionally, SNPs with very small p-values (p ≤ 1x10-5 ) for SCZ and T2D were negatively correlated with longevity. While for the less significant SNPs (1x10-5  < p ≤ 0.05), their effects on disease and longevity were positively correlated. Overall, we identified genetically informed positive and negative factors for human longevity, gained more insights on the accumulation of disease risk alleles during evolution, and provided evidence for the theory of genetic trade-offs between complex diseases and longevity.


Assuntos
Diabetes Mellitus Tipo 2 , Longevidade , Idoso de 80 Anos ou mais , Alelos , Diabetes Mellitus Tipo 2/genética , Humanos , Longevidade/genética , Pessoa de Meia-Idade , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
20.
Mikrochim Acta ; 189(6): 233, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622176

RESUMO

Accurate and low-cost onsite assay of residual antibiotics in food and agriculture-related matrixes (e.g., milk) is of significant importance for evaluating and controlling food pollution risk. Herein, we employed hybrid Cu-doped-g-C3N4 nanozyme to engineer smartphone-assisted onsite visual sensor for reliable and precise reporting the levels of tetracycline (TC) residues in milk through π-π stacking-triggered blocking effect. Benefiting from the synergetic effects of Cu2+ and g-C3N4 nanosheet, Cu-doped-g-C3N4 nanocomposite exhibited an improved peroxidase-like activity, which could effectively catalyze H2O2 to oxidate colorless TMB into steel-blue product oxTMB. Interestingly, owing to the blocking effect caused by the π-π stacking interaction between TC tetraphenyl skeleton and Cu-doped-g-C3N4 nanozyme, the affinity of Cu-doped-g-C3N4 nanocomposite toward the catalytic substrates was remarkably blocked, resulting in a TC concentration-dependent fading of solution color. Using smartphone-assisted detection a simple, low-cost, reliable, and sensitive portable colorimetric sensor-based nanozyme for onsite visual monitoring the residual TC in milk was successfully developed with a detection limit of 86.27 nM. Of particular mention is that this detection limit is comparable to most other reported colorimetric methods and below most official allowable residue thresholds in milk matrixes. This work gave a novel insight to integrate two-dimensional (2D) artificial nanozymes-based π-π stacking-triggered blocking effect with smartphone-assisted detection for developing efficient and low-cost colorimetric point-of-care testing of the risk factors in food and agriculture-related matrixes.


Assuntos
Colorimetria , Leite , Animais , Antibacterianos/análise , Colorimetria/métodos , Peróxido de Hidrogênio/análise , Leite/química , Tetraciclina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...