Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 44(3): 394-406, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34424135

RESUMO

To solve the deterioration of effluent caused by low temperature in urban sewage treatment plant in cold areas, a new type of reactor was proposed, the biochemical environmental and low-temperature operating characteristics of the reactor were studied. Through analysis of flow simulation and dissolved oxygen (DO) distribution when the aeration rate was 0.6 m3/h, it showed that there were many different DO environments in the reactor at the same time, which provided favourable conditions for various biochemical reactions. The operation test showed that the average effluent removal rate of COD, TN, NH4+-N and TP was 92.53%, 74.57%, 89.61% and 96.04%, respectively. And there were a variety of functional bacteria related to nitrogen and phosphorus removal in the system, most of them with strong adaptability at low temperatures. Among the dominant microorganisms, Flavobacterium and Rhodobacter were related to denitrification, Aeromonas and Thiothrix were related to phosphorous removal. Denitrifying phosphorus removal was the main way of phosphorus removal. Picrust2 results showed that the reactor operated well at low temperature, and the regional difference distribution of nitrification genes further confirmed the existence of functional zones in the reactor. The results showed that the Micro-pressure Double-cycle reactor worked well at low temperature, which provided a new idea and way for the upgrading of urban sewage treatment plants in cold areas.


Assuntos
Desnitrificação , Purificação da Água , Esgotos , Eliminação de Resíduos Líquidos/métodos , Temperatura , Reatores Biológicos/microbiologia , Nitrificação , Fósforo , Nitrogênio , Oxigênio
2.
Bioresour Technol ; 364: 128093, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36229011

RESUMO

To reveal the mechanisms of enhanced biological nitrogen and phosphorus removal by denitrifying phosphorus removal in a Micro-pressure swirl reactor (MPSR), this study used a MPSR to treat municipal wastewater and enriched denitrifying phosphate accumulating organisms (DPAOs) by using its alternating anaerobic-anoxic-aerobic environment. The coupling of denitrification phosphorus removal (DPR) and simultaneous nitrification endogenous denitrification phosphorus removal (SNEDPR) was achieved in MPSR, and the average removal rates of COD, NH4+-N, TN and TP were 91.57%, 98.51%, 85.88%, 96.08% respectively. The results of the batch experiments showed that DPAOs activity in the low dissolved oxygen (DO) and high DO zones were 70.5% and 74.3%. The results of intracellular carbon source conversion patterns, microbial assays and functional gene prediction indicated that Flavobacterium and Dechloromonas dominated the DPR process in the low DO zone. Based on these findings, nutrient removal pathways within the MPSR were integrated.

3.
Bioresour Technol ; 320(Pt A): 124305, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189044

RESUMO

This study aimed to propose a new type of micro-pressure swirl reactor (MPSR) to treat urban sewage. The MPSR could form a stable swirl in the reactor, and realized the coexistence of anaerobic, anoxic, and aerobic zones in a single aeration tank. The pilot study showed that MPSR achieved high removal efficient of SS, COD, NH4+-N, TN, TP under the conditions of drastic fluctuation in influent quality and temperature, and the average removal rate were 88.58%, 93.32%, 94.47%, 73.19%, 96.16%. The relative high abundance of Thermomonas, Thaurea, and Dechloromonas, etc, guaranteed the denitrification efficiency of the MPSR, and Dechloromonas was the main phosphorus removal bacteria in the system. The study confirmed the rationality of the structural design of the MPSR, and it was excellent in sewage treatment and stability.


Assuntos
Desnitrificação , Esgotos , Reatores Biológicos , Nitrogênio , Fósforo , Projetos Piloto , Eliminação de Resíduos Líquidos
4.
Water Sci Technol ; 82(9): 1795-1807, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33201844

RESUMO

A micro-pressure swirl reactor (MPSR) was developed for carbon and nitrogen removal of wastewater, in which dissolved oxygen (DO) gradient and internal circulation could be created by setting the aerators along one side of the reactor, and micro-pressure could be realized by sealing most of the top cap and increasing the outlet water level. In this study, velocity and DO distribution in the reactor was measured, removal performance treating high-concentration wastewater was investigated, and the main functional microorganisms were analyzed. The experiment results indicated that there was stable swirl flow and spatial DO gradient in MPSR. Operated in sequencing batch reactor mode, distinct biological environments spatially and temporally were created. Under the average influent condition of chemical oxygen demand (COD) concentration of 2,884 mg/L and total nitrogen (TN) of 184 mg/L, COD removal efficiency and removal loading was 98% and 1.8 kgCOD/(m3·d) respectively, and TN removal efficiency and removal loading reached up to 90% and 0.11 kgTN/(m3·d) respectively. With efficient utilization of DO and simpler configuration for simultaneous nitrification and denitrification, the MPSR has the potential of treating high-concentration wastewater at lower cost.


Assuntos
Nitrogênio , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Desnitrificação , Nitrificação , Eliminação de Resíduos Líquidos
5.
Huan Jing Ke Xue ; 39(12): 5572-5579, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628402

RESUMO

To explore the influence of the influent flow distribution ratio on the denitrification efficiency of low-temperature urban wastewater and analyze the denitrification of multi-level AO coupled flow biochemical process, three-level AO-coupled biofilm technology was used to treat simulated low-C/N urban sewage at a temperature of 10℃±1℃, hydraulic retention time of 8 h, and constant air-water ratio. The reactors were operated under three conditions of inlet water ratios of 5:4:4 (equal volume load), 3:2:1 (equal hydraulic retention time), and 25:15:6 (equal sludge load). The study showed that the multi-level AO-coupled displacement biochemical process has a good removal efficiency with respect to low-temperature and low-C/N wastewater. The pollutant removal efficiency is the highest when the ratio of the influent is 3:2:1 and the average removal rates of COD, NH4+-N, and TN are 87.44%, 96.63%, and 76.81%, respectively. Further studies on the law of nitrogen migration and transformation showed that the main factors constraining the nitrogen removal under three conditions were the nitrification efficiency at each levels, the ratio of 3:2:1 influent reasonably distributing the influent load, and the nitrification efficiency at each level exceeding 85%, creating favorable conditions for denitrification and leading to a higher denitrification efficiency, while the system has the highest total biomass. The research results enrich the theory of multi-level AO cryogenic removal of nitrogen and provide references for engineering designs and applications.


Assuntos
Desnitrificação , Nitrogênio/isolamento & purificação , Eliminação de Resíduos Líquidos , Reatores Biológicos , Nitrificação , Esgotos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...