Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7244, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39174532

RESUMO

The filamentous 'Pf' bacteriophages of Pseudomonas aeruginosa play roles in biofilm formation and virulence, but mechanisms governing Pf prophage activation in biofilms are unclear. Here, we identify a prophage regulatory module, KKP (kinase-kinase-phosphatase), that controls virion production of co-resident Pf prophages and mediates host defense against diverse lytic phages. KKP consists of Ser/Thr kinases PfkA and PfkB, and phosphatase PfpC. The kinases have multiple host targets, one of which is MvaU, a host nucleoid-binding protein and known prophage-silencing factor. Characterization of KKP deletion and overexpression strains with transcriptional, protein-level and prophage-based approaches indicates that shifts in the balance between kinase and phosphatase activities regulate phage production by controlling MvaU phosphorylation. In addition, KKP acts as a tripartite toxin-antitoxin system that provides defense against some lytic phages. A conserved lytic phage replication protein inhibits the KKP phosphatase PfpC, stimulating toxic kinase activity and blocking lytic phage production. Thus, KKP represents a phosphorylation-based mechanism for prophage regulation and antiphage defense. The conservation of KKP gene clusters in >1000 diverse temperate prophages suggests that integrated control of temperate and lytic phage infection by KKP-like regulatory modules may play a widespread role in shaping host cell physiology.


Assuntos
Lisogenia , Prófagos , Pseudomonas aeruginosa , Lisogenia/genética , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/genética , Prófagos/genética , Prófagos/fisiologia , Fosforilação , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regulação Viral da Expressão Gênica
2.
Front Microbiol ; 14: 1138751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152757

RESUMO

Green sulfur bacteria (GSB) are a distinct group of anoxygenic phototrophic bacteria that are found in many ecological niches. Prosthecochloris, a marine representative genus of GSB, was found to be dominant in some coral skeletons. However, how coral-associated Prosthecochloris (CAP) adapts to diurnal changing microenvironments in coral skeletons is still poorly understood. In this study, three Prosthecochloris genomes were obtained through enrichment culture from the skeleton of the stony coral Galaxea fascicularis. These divergent three genomes belonged to Prosthecochloris marina and two genomes were circular. Comparative genomic analysis showed that between the CAP and non-CAP clades, CAP genomes possess specialized metabolic capacities (CO oxidation, CO2 hydration and sulfur oxidation), gas vesicles (vertical migration in coral skeletons), and cbb 3-type cytochrome c oxidases (oxygen tolerance and gene regulation) to adapt to the microenvironments of coral skeletons. Within the CAP clade, variable polysaccharide synthesis gene clusters and phage defense systems may endow bacteria with differential cell surface structures and phage susceptibility, driving strain-level evolution. Furthermore, mobile genetic elements (MGEs) or evidence of horizontal gene transfer (HGT) were found in most of the genomic loci containing the above genes, suggesting that MGEs play an important role in the evolutionary diversification between CAP and non-CAP strains and within CAP clade strains. Our results provide insight into the adaptive strategy and population evolution of endolithic Prosthecochloris strains in coral skeletons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA