Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 14(1): 48, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678482

RESUMO

Escherichia coli Nissle 1917 (EcN) is an important chassis strain widely used for the development of live biotherapeutic products (LBPs). EcN strain naturally harbors two cryptic plasmids with unknown function. During the development of LBPs using EcN strain, the cryptic plasmids were cured usually to avoid plasmid incompatibility or alleviate metabolic burdens associated with these cryptic plasmids. While the cryptic plasmids curing in EcN may appear to be a routine procedure, the comprehensive impact of cryptic plasmids curing on the EcN strain remains incompletely understood. In the present study, the effects of cryptic plasmids curing on EcN were investigated using transcriptome sequencing. The results revealed that only a small number of genes showed significant changes in mRNA levels after cryptic plasmid curing (4 upregulated and 6 downregulated genes), primarily involved in amino acid metabolism. Furthermore, the flu gene showed the most significant different expression, encoding Antigen 43 (Ag43) protein, a Cah family adhesin. Mass spectrometry analysis further confirmed the significant increase in Ag43 expression. Ag43 is commonly present in Escherichia coli and mediates the bacterial autoaggregation. However, despite the upregulation of Ag43 expression, no Ag43-mediated cell self-sedimentation was observed in the cured EcN strain. These findings contribute to making informed decisions regarding the curing of the cryptic plasmids when Escherichia coli Nissle 1917 is used as the chassis strain.

2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139125

RESUMO

Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3ß (GSK-3ß) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3ß. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3ß. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças dos Animais , Gastrodia , MicroRNAs , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Gastrodia/genética , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosforilação , Proteínas tau/metabolismo
3.
Int J Neurosci ; : 1-11, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965801

RESUMO

AIMS: Based on our previous research on the specific miRNAs identified from Gastrodia elata, we selected Gas-miR2-3p to investigate its effects on neuroinflammation via in vitro and in vivo experiments. RESULTS: RT-qPCR analysis indicated that G. elata specific Gas-miR2-3p was detected in all murine tissues post-oral administration, suggesting their potential as orally bioavailable miRNA. The analysis of RT-qPCR, Western blotting and ELISA assays consistently demonstrate that the expression of inflammatory factors as TNF-α, IL-6, IL-1ß was decreased and the expression levels of p-p65 and p-IκBα were downregulated after the action of Gas-miR2-3p in both cell and animal experiments. CONCLUSION: Gas-miR2-3p can attenuate neuroinflammation by regulating the inflammation factors and suppressing the activation of the NF-κB signaling pathway. Our findings indicate that G. elata miRNAs, as novel active components, perform a modulatory role in the NF-κB signaling pathway associated with neuroinflammation in a cross-species way.

4.
Mol Biol Rep ; 50(10): 8509-8521, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642757

RESUMO

BACKGROUND: Protein acetylation is an important post-translational modification (PTM) that widely exists in organisms. As a reversible PTM, acetylation modification can regulate the function of proteins with high efficiency. In the previous study, the acetylation sites of silkworm proteins were identified on a large scale by nano-HPLC/MS/MS (nanoscale high performance liquid chromatography-tandem secondary mass spectrometry), and a total of 11 acetylation sites were discovered on Bombyx mori nutrient-storage protein SP3 (BmSP3). The purpose of this study was to investigate the effect of acetylation level on BmSP3. METHODS AND RESULTS: In this study, the acetylation of BmSP3 was further verified by immunoprecipitation (IP) and Western blotting. Then, it was confirmed that acetylation could up-regulate the expression of BmSP3 by improving its protein stability in BmN cells. Co-IP and RNAi experiments showed acetyltransferase BmCBP could bind to BmSP3 and catalyze its acetylation modification, then regulate the expression of BmSP3. Furthermore, the knock-down of BmCBP could improve the ubiquitination level of BmSP3. Both acetylation and ubiquitination occur on the side chain of lysine residues, therefore, we speculated that the acetylation of BmSP3 catalyzed by BmCBP could competitively inhibit its ubiquitination modification and improve its protein stability by inhibiting ubiquitin-mediated proteasome degradation pathway, and thereby increase the expression and intracellular accumulation. CONCLUSIONS: BmCBP catalyzes the acetylation of BmSP3 and may improve the stability of BmSP3 by competitive ubiquitination. This conclusion provides a new functional basis for the extensive involvement of acetylation in the regulation of nutrient storage and utilization in silkworm, Bombyx mori.


Assuntos
Bombyx , Animais , Bombyx/genética , Acetilação , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Nutrientes , Acetiltransferases
5.
Insects ; 14(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37103124

RESUMO

Acetylation is an important and reversible post-translational modification (PTM) of protein, which is involved in many cellular physiological processes. In previous studies, lots of nutrient storage proteins were found to be highly acetylated in silkworms, and acetylation can improve the stability of these proteins. However, the related acetyltransferase was not involved. In the present work, a Bombyx mori nutrient storage protein, apolipophorin II (BmApoLp-II), was further confirmed to be acetylated, and the acetylation could improve its protein expression. Furthermore, RNAi and Co-IP showed that the acetyltransferase BmCBP was found to catalyze the acetylation modification of BmApoLp-II, and thus affect its protein expression. Meanwhile, it was proved that acetylation could improve the stability of the BmApoLp-II protein by completing its ubiquitination. These results lay a foundation for further study on the mechanism of regulating nutrition storage and hydrolysis utilization of storage proteins by BmCBP and the acetylation in the silkworm Bombyx mori.

6.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835371

RESUMO

The glucose regulated protein (GRP78) is an important chaperone for various environmental and physiological stimulations. Despite the importance of GRP78 in cell survival and tumor progression, the information regarding GRP78 in silkworm Bombyx mori L. is poorly explored. We previously identified that GRP78 expression was significantly upregulated in the silkworm Nd mutation proteome database. Herein, we characterized the GRP78 protein from silkworm B. mori (hereafter, BmGRP78). The identified BmGRP78 protein encoded a 658 amino acid residues protein with a predicted molecular weight of approximately 73 kDa and comprised of two structural domains, a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). BmGRP78 was ubiquitously expressed in all examined tissues and developmental stages by quantitative RT-PCR and Western blotting analysis. The purified recombinant BmGRP78 (rBmGRP78) exhibited ATPase activity and could inhibit the aggregating thermolabile model substrates. Heat-induction or Pb/Hg-exposure strongly stimulated the upregulation expression at the translation levels of BmGRP78 in BmN cells, whereas no significant change resulting from BmNPV infection was found. Additionally, heat, Pb, Hg, and BmNPV exposure resulted in the translocation of BmGRP78 into the nucleus. These results lay a foundation for the future identification of the molecular mechanisms related to GRP78 in silkworms.


Assuntos
Bombyx , Chaperona BiP do Retículo Endoplasmático , Proteínas de Insetos , Animais , Bombyx/genética , Bombyx/metabolismo , Bombyx/virologia , Chaperona BiP do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Chumbo/toxicidade , Nucleopoliedrovírus/genética
7.
Appl Biochem Biotechnol ; 194(4): 1621-1635, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34826090

RESUMO

Acetylation is a highly conservative and reversible post-translational modification. Acetylation modification can regulate gene expression by altering protein function and is widely identified in an increasing number of species. Previously, the acetylated proteome of silkworm was identified by combining acetylated polypeptide enrichment with nano-HPLC/MS/MS; the identification revealed that the SP proteins (SPs) were high acetylated. In this study, the acetylation of SP1, one of the SPs, was further confirmed using immunoprecipitation (IP) and Western blotting. Then, we found the acetylation could upregulate SP1 protein expression by enhancing the protein stability. Further research found that the acetylation of SP1 protein can competitively inhibit its ubiquitination and thus improve the stability and cell accumulation of SP1 protein by inhibiting the ubiquitin-mediated proteasome degradation pathway. This result provides a basis for acetylation to regulate the nutrient storage and utilization of silkworm.


Assuntos
Bombyx , Acetilação , Animais , Bombyx/genética , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Espectrometria de Massas em Tandem
8.
Arch Insect Biochem Physiol ; 107(3): e21823, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34075635

RESUMO

The 30 K proteins are the major silkworm hemolymph proteins and are involved in a variety of physiological processes, such as nutrient and energy storage, embryogenesis, immune response, and inhibition of apoptosis. The Bm30K-15 protein is one of the 30 K proteins and is abundant in the hemolymph of fifth instar silkworm larva. We previously found that the Bm30K-15 protein can be acetylated. In the present study, we found that acetylation can improve the protein stability of Bm30K-15. Further exploration confirmed that the increase in protein stability by acetylation was caused by competition between acetylation and ubiquitination. In summary, these findings aim to provide insight into the effect of acetylation modification on the protein level and stability of the Bm30K-15 and the possible molecular mechanism of its existence in silkworm, Bombyx mori.


Assuntos
Apolipoproteínas/metabolismo , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Acetilação , Animais , Estabilidade Proteica , Ubiquitinação , Regulação para Cima
9.
Int Immunopharmacol ; 98: 107882, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34182245

RESUMO

Daphnetin (7, 8-dihydroxycoumarin, DAPH), a coumarin derivative isolated from Daphne odora var., recently draws much more attention as a promising drug candidate to treat neuroinflammatory diseases due to its protective effects against neuroinflammation. However, itscontribution to chronic inflammatory pain is largely unknown. In the current work, we investigated the effects of DAPH in a murine model of inflammatory pain induced by complete Freund's adjuvant (CFA) and its possible underlying mechanisms. Our results showed that DAPH treatment significantly attenuated mechanical allodynia provoked by CFA. A profound inhibition of spinal glial activation, followed by attenuated expression levels of spinal pro-inflammatory cytokines, was observed in DAPH-treated inflammatory pain mice. Further study demonstrated that DAPH mediated negative regulation of spinal NF-κB pathway, as well as its preferential activation of Nrf2/HO-1 signaling pathway in inflammatory pain mice. This study, for the first time, indicated that DAPH might preventthe development of mechanical allodynia in mice with inflammatory pain. And more importantly, these data provide evidence for the potential application of DAPH in the treatment of chronic inflammatory pain.


Assuntos
Dor Crônica/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Umbeliferonas/farmacologia , Animais , Dor Crônica/imunologia , Dor Crônica/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia , Heme Oxigenase-1/metabolismo , Humanos , Hiperalgesia/imunologia , Hiperalgesia/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/imunologia , Neuroglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Dor/imunologia , Dor/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia , Umbeliferonas/uso terapêutico
10.
Front Pharmacol ; 11: 542405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101016

RESUMO

Gastrodia elata Blume (G. elata) is a valuable traditional Chinese medicine with neuroprotection, anti-inflammatory, and immune regulatory functions. MicroRNAs (miRNA) is a kind of endogenous noncoding small RNAs that plays distinctly important roles for gene regulation of organisms. So far, the research on G. elata is mainly focused on the pharmacological functions of the natural chemical ingredients, and the function of G. elata miRNA remains unknown. In this study, 5,718 known miRNAs and 38 novel miRNAs were identified by high-throughput sequencing from G. elata. Based on GO and KEGG analysis, we found that the human genes possibly regulated by G. elata miRNAs were related to the cell cycle, immune regulation, intercellular communication, etc. Furthermore, two novel miRNAs as Gas-miR01 and Gas-miR02 have stable and high expression in the medicinal tissues of G. elata. Further bioinformatics prediction showed that both Gas-miR01 and Gas-miR02 could target Homo sapiens A20 gene, furthermore, the dual-luciferase reporter gene assay and Western Blotting verified the interaction of Gas-miR01 or Gas-miR02 with A20. These evidences suggested that G. elata-unique miRNAs might be involved in certain physiological processes. The animal experiment showed that Gas-miR01 and Gas-miR02 could be detected in some tissues of mice by intragastric administration; meanwhile, the A20 expression in some tissues of mice was downregulated. These results supported for the functional study of G. elata miRNAs.

11.
J Texture Stud ; 51(4): 642-649, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32112657

RESUMO

The current study aimed to determine the rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555 using different nitrogen sources. The viscosity and rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555 from different ratios of inorganic, organic, and mixture of organic and inorganic nitrogen sources were measured under different conditions of pH, rotational speeds, and temperatures and also in the presence of various metal ions. Increasing the proportion of sodium nitrate (NaNO3 ) as the nitrogen source enhanced the viscosity and the ability of welan gum solution to resist high temperatures and salinity. The viscosity of welan gum solution derived from all three nitrogen sources gradually declined when the rotational speed was increased and stabilized at rotational speeds >30 rpm. The elastic modulus and viscous modulus were highest for a welan gum solution derived from 4.0 g/L NaNO3 . The viscosity, temperature, and salt tolerance were superior when a welan gum solution was produced from NaNO3 in comparison with that produced from organic nitrogen source.


Assuntos
Nitrogênio/química , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Reologia , Sphingomonas/metabolismo , Viscosidade , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Nitratos , Temperatura
12.
Arch Insect Biochem Physiol ; 103(4): e21649, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31777104

RESUMO

Acetylation is an important, highly conserved, and reversible post-translational modification of proteins. Previously, we showed by nano-HPLC/MS/MS that many nutrient storage proteins in the silkworm are acetylated. Among these proteins, most of the known 30K proteins were shown to be acetylated, including 23 acetylated 30K proteins containing 49 acetylated sites (Kac), indicating the importance of the acetylation of 30K proteins in silkworm. In this study, Bm30K-3, a 30K protein containing three Kac sites, was further assessed in functional studies of its acetylation. Increasing the level of Bm30K-3 acetylation by adding the deacetylase inhibitor trichostatin A (TSA) increased the levels of this protein and further inhibited cellular apoptosis induced by H2 O2 . In contrast, decreasing the level of acetylation by adding the acetylase inhibitor C646 could reduce the level of Bm30K-3 and increase H2 O2 -induced apoptosis. Subsequently, BmN cells were treated with CHX and MG132, and increasing the acetylation level using TSA was shown to inhibit protein degradation and improve the stability of Bm30K-3. Furthermore, the acetylation of Bm30K-3 could compete with its ability to be ubiquitinated, suggesting that acetylation could inhibit the ubiquitin-mediated proteasome degradation pathway, improving the stability and accumulation of proteins in cells. These results further indicate that acetylation might regulate nutrition storage and utilization in Bombyx mori, which requires further study.


Assuntos
Apoptose/genética , Bombyx/fisiologia , Proteínas de Insetos/metabolismo , Lisina/química , Acetilação , Animais , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Ácidos Hidroxâmicos/química , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Proteólise/efeitos dos fármacos
13.
Gene ; 690: 113-119, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30593917

RESUMO

MicroRNA is an important regulation factor in insect development and metamorphosis. It has been reported that E(spl)m4 is a miRNA-targeted gene, as well as the target of the Notch signaling pathway in Drosophila. The expression of E(spl)m4 can be regulated by microRNA and further affect the neural development of Drosophila. Here, we found that BmEm4, an ortholog of E(spl)m4 from Bombyx mori, was the target gene of bmo-miR-79, with target sites containing the Brd and K boxes of the BmEm4_3'UTR, which was validated by the dual luciferase reporter (DLR) assay. Furthermore, bmo-miR-79 mimics can inhibit the expression of BmEm4 in BmN cells after transfection, and bmo-miR-79 can also inhibit the expression of BmEm4 in different developmental stages of Bombyx mori at a posttranscriptional level, to different degrees. The EMSA test further showed that bmo-miR-79 could bind to BmAGO2, which is the Bombyx mori argonaute2 protein, suggesting that bmo-miR-79 might regulate the expression of BmEm4 by forming miRISC complexes with BmAGO2. Taken together, bmo-miR-79 could regulate the expression of BmEm4 mediated by BmAGO2 and further affect its function in the silkworm Bombyx mori.


Assuntos
Proteínas Argonautas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bombyx/crescimento & desenvolvimento , Regulação para Baixo , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Sítios de Ligação , Bombyx/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Metamorfose Biológica , Transdução de Sinais
14.
Cell Cycle ; 17(23): 2577-2592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30488756

RESUMO

Oncogenic KIT or PDGFRA receptor tyrosine kinase (TK) mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GISTs), and the KIT/PDGFRA kinase inhibitor, imatinib, is the standard of care for patients with metastatic GIST. However, approximately 10% of KIT-positive GIST metastases lose KIT expression at the time of clinical progression during imatinib therapy. In the present report, we performed TK-activation screens, using phosphotyrosine-TK double immunoaffinity purification and mass spectrometry, in GIST in vitro models lacking KIT expression. These studies demonstrated tyrosine-phosphorylated EGFR, AXL, and EPHA2 in four of six KIT-negative GIST lines (GIST62, GIST522, GIST54, GIST226, GIST48B, and GIST430B), and tyrosine-phosphorylated focal adhesion kinase (FAK) in each of the six KIT-negative lines. AXL expression was strong in KIT-negative or -weak clinical GIST samples that were obtained from progressing metastases during imatinib therapy. AXL knockdown inhibited viability in three KIT-negative GIST cell lines (GIST62, GIST54, and GIST522), but not in an AXL-negative, KIT-positive GIST control cell line (GIST430). AXL inhibition by R428, a specific AXL kinase inhibitor, reduced viability in AXL-activated GIST54. AXL knockdown in GIST62, GIST522, and GIST54 was accompanied by an increase in p21, p27, and p53 expression. By contrast, gefitinib-mediated EGFR inhibition, PF562271-mediated FAK inactivation, and shRNA-mediated knockdowns of EPHA2 and FAK had no effect on viability or colony formation of the KIT-negative GISTs. These findings highlight the potential relevance of AXL/p53 signaling as a therapeutic target in a subset of GISTs that have lost KIT oncoprotein expression.


Assuntos
Proteínas Proto-Oncogênicas c-kit/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Gefitinibe/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/genética , Receptor EphA2/metabolismo , Receptor Tirosina Quinase Axl
15.
Arch Insect Biochem Physiol ; 98(3): e21463, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29569264

RESUMO

Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself.


Assuntos
Acetiltransferases/metabolismo , Bombyx/enzimologia , Tubulina (Proteína)/metabolismo , Animais , Ciclo Celular , Proteínas de Insetos/metabolismo , Larva/enzimologia
16.
Sheng Wu Gong Cheng Xue Bao ; 34(1): 132-139, 2018 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-29380578

RESUMO

Antibacterial peptide can be easily degraded by protease and has the lethal effect on the host Escherichia coli. In order to solve these problems and further improve the expression ability of the Escherichia coli system, the antimicrobial peptide Spinosan-C of Paa spinosa was studied. First, the codon of Spinosan-C was optimized according to E. coli codon usage frequency. Then, the 8 multimeric Spinosan-C gene (8×Spinosan-C) was synthesized and cloned into prokaryotic expression vector pET-28a. The fusion antimicrobial peptide 8×Spinosan-C was further highly expressed in Escherichia coli strain Rosetta. The recombinant 8×Spinosan-C protein was then purified and cleaved specially by formic acid to generate the Spinosan-C monomer. Antibacterial test in vitro suggested that the cleaved Spinosan-C monomer had antibacterial bioactivity against the test bacteria. This study provides a technical reference for the largescale preparation of frog antimicrobial peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Benzofuranos/farmacologia , Escherichia coli/efeitos dos fármacos , Ranidae , Animais , Anti-Infecciosos , Proteínas Recombinantes de Fusão
17.
Arch Microbiol ; 199(7): 1055-1064, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28396915

RESUMO

To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic-organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Nitrogênio/metabolismo , Polissacarídeos Bacterianos/biossíntese , Sphingomonas/genética , Sphingomonas/metabolismo , Sequência de Bases , Biomassa , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transcriptoma/genética
18.
BMC Genomics ; 18(1): 201, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28231766

RESUMO

BACKGROUND: A transposable element (TE) is a DNA fragment that can change its position within a genome. Transposable elements play important roles in maintaining the stability and diversity of organisms by transposition. Recent studies have shown that approximately half of the genes in Bombyx mori are TEs. RESULTS: We systematically identified and analyzed the BmAGO2-associated TEs, which exceed 100 in the B. mori genome. Additionally, we also mapped the small RNAs associated with BmAGO2 in B.mori. The transposon Bm1645 is the most abundant TE associated with BmAGO2, and Bm1645-derived small RNAs represent a small RNA pool. We determined the expression patterns of several Bm1645-derived small RNAs by northern blotting, and the results showed there was differential expression of multiple small RNAs in normal and BmNPV-infected BmN cells and silkworms from various developmental stages. We confirmed that four TE-siRNAs could bind to BmAGO2 using EMSA and also validated the recognition sites of these four TE-siRNAs in Bm1645 by dual-luciferase reporter assays. Furthermore, qRT-PCR analysis revealed the overexpression of the four TE-siRNAs could downregulate the expression of Bm1645 in BmN cells, and the transcription of Bm1645 was upregulated by the downregulation of BmAGO2. CONCLUSIONS: Our results suggest Bm1645 functions as a source of small RNAs pool and this pool can produce many BmAGO2-associated small RNAs that regulate TE's expression.


Assuntos
Proteínas Argonautas/genética , Bombyx/genética , Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Pequeno RNA não Traduzido/genética , Animais , Bombyx/virologia , Mapeamento Cromossômico , Regulação para Baixo , Família Multigênica , Interferência de RNA , Reprodutibilidade dos Testes
19.
J Mol Microbiol Biotechnol ; 27(1): 55-63, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28092912

RESUMO

This study aimed to investigate the effect of nitrogen sources on the production and rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555. Six different nitrogen sources were used for ATCC 31555 fermentation, and 2 of these were further analyzed due to their more positive influence on welan gum production and bacterial biomass. Bacterial biomass, welan gum yield, welan viscosity, molecular weight, monosaccharide composition, acyl content, and welan structure were analyzed. Welan gum production and the biomass concentration of ATCC 31555 were higher in media containing NaNO3 and beef extract. Welan viscosity decreased at higher temperatures of 30-90°C, and it increased with a higher welan concentration. In the media containing NaNO3 (3 g·L-1), welan viscosity was higher at 30-70°C and a welan solution concentration of 6-10 g·L-1. With a reduced NaNO3 concentration, the molecular weight of welan gum and the molar ratio of mannose decreased, but the molar ratio of glucuronic acid increased. With different nitrogen sources, the acetyl content of welan gum differed but its structure was similar. NaNO3 and beef extract facilitated welan production. A reduced NaNO3 concentration promoted welan viscosity.


Assuntos
Fenômenos Químicos , Gengiva/química , Gengiva/metabolismo , Nitrogênio/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Sphingomonas/metabolismo , Biomassa , Meios de Cultura/química , Fermentação , Peso Molecular , Monossacarídeos/análise , Nitratos/metabolismo , Sphingomonas/crescimento & desenvolvimento , Temperatura
20.
J Insect Physiol ; 91-92: 56-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27374983

RESUMO

Lysine acetylation (Kac) is a vital post-translational modification that plays an important role in many cellular processes in organisms. In the present study, the nutrient storage proteins in hemolymph were first found to be highly acetylated-particularly SP2 protein, which contains 20 potential Kac sites. Further results confirmed that lysine acetylation could stabilize and up-regulate the protein level of anti-apoptosis protein SP2, thereby improving the survival of H2O2-treated BmN cells and suppressing the apoptosis induced by H2O2. The potential mechanism involved in the inhibition of ubiquitin-mediated proteasomal degradation by crosstalk between lysine acetylation and ubiquitination. Our results showed that the increase in the acetylation level by TSA could decrease the ubiquitination and improve the protein level of SP2, indicating that lysine acetylation could influence the SP2 protein level through competition between ubiquitination and the suppression of ubiquitin-mediated proteasomal degradation, thereby stabilizing the protein. SP2 is a major nutrient storage protein from hemolymph for amino acid storage and utilization. The crosstalk between lysine acetylation and ubiquitination of SP2 might imply an important role of lysine acetylation for nutrient storage and utilization in silkworm.


Assuntos
Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Western Blotting , Bombyx/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Larva/crescimento & desenvolvimento , Larva/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...