Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(4): 101084, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411561

RESUMO

Among the extensive repertoire of carbohydrate-active enzymes, lytic polysaccharide monooxygenases (LPMOs) have a key role in recalcitrant biomass degradation. LPMOs are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides such as cellulose and chitin. Several LPMOs contain carbohydrate-binding modules (CBMs) that are known to promote LPMO efficiency. However, structural and functional properties of some CBMs remain unknown, and it is not clear why some LPMOs, like CjLPMO10A from the soil bacterium Cellvibrio japonicus, have multiple CBMs (CjCBM5 and CjCBM73). Here, we studied substrate binding by these two CBMs to shine light on their functional variation and determined the solution structures of both by NMR, which constitutes the first structure of a member of the CBM73 family. Chitin-binding experiments and molecular dynamics simulations showed that, while both CBMs bind crystalline chitin with Kd values in the micromolar range, CjCBM73 has higher affinity for chitin than CjCBM5. Furthermore, NMR titration experiments showed that CjCBM5 binds soluble chitohexaose, whereas no binding of CjCBM73 to this chitooligosaccharide was detected. These functional differences correlate with distinctly different arrangements of three conserved aromatic amino acids involved in substrate binding. In CjCBM5, these residues show a linear arrangement that seems compatible with the experimentally observed affinity for single chitin chains. On the other hand, the arrangement of these residues in CjCBM73 suggests a wider binding surface that may interact with several chitin chains. Taken together, these results provide insight into natural variation among related chitin-binding CBMs and the possible functional implications of such variation.


Assuntos
Proteínas de Bactérias/química , Cellvibrio/enzimologia , Quitosana/química , Oxigenases de Função Mista/química , Oligossacarídeos/química , Domínios Proteicos
2.
J Biol Chem ; 295(27): 9134-9146, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32398257

RESUMO

Findings from recent studies have indicated that enzymes containing more than one catalytic domain may be particularly powerful in the degradation of recalcitrant polysaccharides such as chitin and cellulose. Some known multicatalytic enzymes contain several glycoside hydrolase domains and one or more carbohydrate-binding modules (CBMs). Here, using bioinformatics and biochemical analyses, we identified an enzyme, Jd1381 from the actinobacterium Jonesia denitrificans, that uniquely combines two different polysaccharide-degrading activities. We found that Jd1381 contains an N-terminal family AA10 lytic polysaccharide monooxygenase (LPMO), a family 5 chitin-binding domain (CBM5), and a family 18 chitinase (Chi18) domain. The full-length enzyme, which seems to be the only chitinase produced by J. denitrificans, degraded both α- and ß-chitin. Both the chitinase and the LPMO activities of Jd1381 were similar to those of other individual chitinases and LPMOs, and the overall efficiency of chitin degradation by full-length Jd1381 depended on its chitinase and LPMO activities. Of note, the chitin-degrading activity of Jd1381 was comparable with or exceeded the activities of combinations of well-known chitinases and an LPMO from Serratia marcescens Importantly, comparison of the chitinolytic efficiency of Jd1381 with the efficiencies of combinations of truncated variants-JdLPMO10 and JdCBM5-Chi18 or JdLPMO10-CBM5 and JdChi18-indicated that optimal Jd1381 activity requires close spatial proximity of the LPMO10 and the Chi18 domains. The demonstration of intramolecular synergy between LPMOs and hydrolytic enzymes reported here opens new avenues toward the development of efficient catalysts for biomass conversion.


Assuntos
Actinobacteria/enzimologia , Quitinases/metabolismo , Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Celulose/metabolismo , Quitina/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeos/metabolismo , Hidrólise , Oxigenases de Função Mista/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Polissacarídeos/metabolismo , Especificidade por Substrato
3.
PLoS One ; 8(5): e64422, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671716

RESUMO

Moraxella catarrhalis is one of the three most common causative bacterial pathogens of otitis media, however no effective vaccine against M. catarrhalis has been developed so far. To identify M. catarrhalis vaccine candidate antigens, we used carefully selected sera from children with otitis media and healthy individuals to screen small-fragment genomic libraries that are expressed to display frame-selected peptides on a bacterial cell surface. This ANTIGENome technology led to the identification of 214 antigens, 23 of which were selected by in vitro or in vivo studies for additional characterization. Eight of the 23 candidates were tested in a Moraxella mouse pulmonary clearance model, and 3 of these antigens induced significantly faster bacterial clearance compared to adjuvant or to the previously characterized antigen OmpCD. The most significant protection data were obtained with the antigen MCR_1416 (Msp22), which was further investigated for its biological function by in vitro studies suggesting that Msp22 is a heme binding protein. This study comprises one of the most exhaustive studies to identify potential vaccine candidate antigens against the bacterial pathogen M. catarrhalis.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Pulmão/imunologia , Moraxella catarrhalis/imunologia , Infecções por Moraxellaceae/imunologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Western Blotting , Criança , Ensaio de Imunoadsorção Enzimática , Biblioteca Genômica , Hemeproteínas/genética , Hemeproteínas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/microbiologia , Camundongos , Moraxella catarrhalis/genética , Moraxella catarrhalis/fisiologia , Infecções por Moraxellaceae/microbiologia , Otite Média/imunologia , Otite Média/microbiologia
4.
Mol Microbiol ; 74(3): 724-41, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19788543

RESUMO

We previously showed that the 2-oxoglutarate dehydrogenase inhibitor protein OdhI of Corynebacterium glutamicum is phosphorylated by PknG at Thr14, but that also additional serine/threonine protein kinases (STPKs) can phosphorylate OdhI. To identify these, a set of three single (DeltapknA, DeltapknB, DeltapknL), five double (DeltapknAG, DeltapknAL, DeltapknBG, DeltapknBL, DeltapknLG) and two triple deletion mutants (DeltapknALG, DeltapknBLG) were constructed. The existence of these mutants shows that PknA, PknB, PknG and PknL are not essential in C. glutamicum. Analysis of the OdhI phosphorylation status in the mutant strains revealed that all four STPKs can contribute to OdhI phosphorylation, with PknG being the most important one. Only mutants in which pknG was deleted showed a strong growth inhibition on agar plates containing glutamine as carbon and nitrogen source. Thr14 and Thr15 of OdhI were shown to be phosphorylated in vivo, either individually or simultaneously, and evidence for up to two additional phosphorylation sites was obtained. Dephosphorylation of OdhI was shown to be catalysed by the phospho-Ser/Thr protein phosphatase Ppp. Besides OdhI, the cell division protein FtsZ was identified as substrate of PknA, PknB and PknL and of the phosphatase Ppp, suggesting a role of these proteins in cell division.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Proteínas do Citoesqueleto/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Divisão Celular , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Ácidos Cetoglutáricos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Especificidade por Substrato/genética , Treonina/genética , Treonina/metabolismo
5.
Appl Microbiol Biotechnol ; 76(3): 691-700, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17437098

RESUMO

We recently showed that the activity of the 2-oxoglutarate dehydrogenase complex (ODHC) in Corynebacterium glutamicum is controlled by a novel regulatory mechanism that involves a 15-kDa protein called OdhI and serine/threonine protein kinase G (PknG). In its unphosphorylated state, OdhI binds to the E1 subunit (OdhA) of ODHC and, thereby, inhibits its activity. Inhibition is relieved by phosphorylation of OdhI at threonine-14 by PknG under conditions requiring high ODHC activity. In this work, evidence is provided that the dephosphorylation of phosphorylated OdhI is catalyzed by a phospho-Ser/Thr protein phosphatase encoded by the gene cg0062, designated ppp. As a decreased ODHC activity is important for glutamate synthesis, we investigated the role of OdhI and PknG for glutamate production under biotin limitation and after addition of Tween-40, penicillin, or ethambutol. A DeltaodhI mutant formed only 1-13% of the glutamate synthesized by the wild type. Thus, OdhI is essential for efficient glutamate production. The effect of a pknG deletion on glutamate synthesis was dependent on the induction conditions. Under strong biotin limitation and in the presence of ethambutol, the DeltapknG mutant showed significantly increased glutamate production, offering a new way to improve production strains.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Ácido Glutâmico/biossíntese , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Biotecnologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , DNA Bacteriano/genética , Inibidores Enzimáticos/metabolismo , Deleção de Genes , Genes Bacterianos , Cinética , Fosforilação , Plasmídeos/genética , Proteínas Quinases/genética
6.
Biotechnol Bioeng ; 98(1): 193-200, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17318908

RESUMO

Confocal laser scanning microscopy (CLSM) is a method allowing in situ visualization of protein transport in porous chromatography resins. CLSM requires labeling a protein with a fluorescent probe. Recent work has shown that conjugation of the protein with fluorescent probes can lead to significant changes in the retention time of the protein-dye conjugate with respect to the unlabeled protein. In this study, we show that common labeling procedures result in a heterogeneous mixture of different variants and that attachment location of the fluorescent probe on the protein surface can have a strong effect on the retention of protein-dye conjugate. Lysozyme was labeled with Cy5 and BODIPY-FL succinimidyl esters, followed by chromatographic separation of the different lysozyme-dye conjugates and subsequent determination of the label position using MALDI-TOF-MS. Finally, homogenously labeled lysozyme-dye conjugates were used in CLSM experimentation and compared to published results arising from heterogeneously labeled feedstocks. The results confirm that the attachment location of the fluorescent probe has a strong effect on chromatographic retention behavior. When addressing the binding affinities of the different labeled protein fractions, it was found that native lysozyme was able to displace lysozyme-dye conjugates when the fluorescent label was attached to lysine-33, but not when attached to lysine-97. Finally, it could be shown that when superimposing the single profiles of the three major fractions obtained during a labeling procedure a qualitative picture of the net profile is obtained.


Assuntos
Cromatografia por Troca Iônica/métodos , Corantes Fluorescentes/química , Muramidase/química , Muramidase/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem/métodos
7.
Appl Environ Microbiol ; 73(3): 861-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17142369

RESUMO

Corynebacterium glutamicum possesses two terminal oxidases, cytochrome aa3 and cytochrome bd. Cytochrome aa3 forms a supercomplex with the cytochrome bc1 complex, which contains an unusual diheme cytochrome c1. Both the bc1 -aa3 supercomplex and cytochrome bd transfer reducing equivalents from menaquinol to oxygen; however, they differ in their proton translocation efficiency by a factor of three. Here, we analyzed the role of cytochrome bd for growth and lysine production. When cultivated in glucose minimal medium, a cydAB deletion mutant of C. glutamicum ATCC 13032 grew like the wild type in the exponential phase, but growth thereafter was inhibited, leading to a biomass formation 40% less than that of the wild type. Constitutive overproduction of functional cytochrome bd oxidase in ATCC 13032 led to a reduction of the growth rate by approximately 45% and of the maximal biomass by approximately 35%, presumably as a consequence of increased electron flow through the inefficient cytochrome bd oxidase. In the L-lysine-producing C. glutamicum strain MH20-22B, deletion of the cydAB genes had only minor effects on growth rate and biomass formation, but lysine production was increased by approximately 12%. Thus, the respiratory chain was shown to be a target for improving amino acid production by C. glutamicum.


Assuntos
Corynebacterium glutamicum/crescimento & desenvolvimento , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Lisina/biossíntese , Biomassa , Biotecnologia/métodos , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/metabolismo , Meios de Cultura , Complexo IV da Cadeia de Transporte de Elétrons/genética , Deleção de Genes , Consumo de Oxigênio
8.
J Biol Chem ; 281(18): 12300-7, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16522631

RESUMO

A novel regulatory mechanism for control of the ubiquitous 2-oxoglutarate dehydrogenase complex (ODH), a key enzyme of the tricarboxylic acid cycle, was discovered in the actinomycete Corynebacterium glutamicum, a close relative of important human pathogens like Corynebacterium diphtheriae and Mycobacterium tuberculosis. Based on the finding that a C. glutamicum mutant lacking serine/threonine protein kinase G (PknG) was impaired in glutamine utilization, proteome comparisons led to the identification of OdhI as a putative substrate of PknG. OdhI is a 15-kDa protein with a forkhead-associated domain and a homolog of mycobacterial GarA. By using purified proteins, PknG was shown to phosphorylate OdhI at threonine 14. The glutamine utilization defect of the delta pknG mutant could be abolished by the additional deletion of odhI, whereas transformation of a delta odhI mutant with a plasmid encoding OdhI-T14A caused a defect in glutamine utilization. Affinity purification of OdhI-T14A led to the specific copurification of OdhA, the E1 subunit of ODH. Because ODH is essential for glutamine utilization, we assumed that unphosphorylated OdhI inhibits ODH activity. In fact, OdhI was shown to strongly inhibit ODH activity with a Ki value of 2.4 nM. The regulatory mechanism described offers a molecular clue for the reduced ODH activity that is essential for the industrial production of 1.5 million tons/year of glutamate with C. glutamicum. Moreover, because this signaling cascade is likely to operate also in mycobacteria, our results suggest that the attenuated pathogenicity of mycobacteria lacking PknG might be caused by a disturbed tricarboxylic acid cycle.


Assuntos
Corynebacterium glutamicum/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Regulação Enzimológica da Expressão Gênica , Complexo Cetoglutarato Desidrogenase/metabolismo , Fosfoproteínas/química , Sequência de Aminoácidos , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Genoma Bacteriano , Glutamina/metabolismo , Dados de Sequência Molecular , Fosfoproteínas/fisiologia , Fosforilação , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Treonina/metabolismo , Ácidos Tricarboxílicos/metabolismo
9.
J Biotechnol ; 104(1-3): 129-53, 2003 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-12948635

RESUMO

Corynebacterium glutamicum is an aerobic bacterium that requires oxygen as exogenous electron acceptor for respiration. Recent molecular and biochemical analyses together with information obtained from the genome sequence showed that C. glutamicum possesses a branched electron transport chain to oxygen with some remarkable features. Reducing equivalents obtained by the oxidation of various substrates are transferred to menaquinone via at least eight different dehydrogenases, i.e. NADH dehydrogenase, succinate dehydrogenase, malate:quinone oxidoreductase, pyruvate:quinone oxidoreductase, D-lactate dehydrogenase, L-lactate dehydrogenase, glycerol-3-phosphate dehydrogenase and L-proline dehydrogenase. All these enzymes contain a flavin cofactor and, except succinate dehydrogenase, are single subunit peripheral membrane proteins located inside the cell. From menaquinol, the electrons are passed either via the cytochrome bc(1) complex to the aa(3)-type cytochrome c oxidase with low oxygen affinity, or to the cytochrome bd-type menaquinol oxidase with high oxygen affinity. The former branch is exceptional, in that it does not involve a separate cytochrome c for electron transfer from cytochrome c(1) to the Cu(A) center in subunit II of cytochrome aa(3). Rather, cytochrome c(1) contains two covalently bound heme groups, one of which presumably takes over the function of a separate cytochrome c. The bc(1) complex and cytochrome aa(3) oxidase form a supercomplex in C. glutamicum. The phenotype of defined mutants revealed that the bc(1)-aa(3) branch, but not the bd branch, is of major importance for aerobic growth in minimal medium. Changes of the efficiency of oxidative phosphorylation caused by qualitative changes of the respiratory chain or by a defective F(1)F(0)-ATP synthase were found to have strong effects on metabolism and amino acid production. Therefore, the system of oxidative phosphorylation represents an attractive target for improving amino acid productivity of C. glutamicum by metabolic engineering.


Assuntos
Corynebacterium/genética , Corynebacterium/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Vitamina K 2/metabolismo , Respiração Celular/fisiologia , Corynebacterium/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Fosforilação
10.
J Biol Chem ; 278(6): 4339-46, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12446663

RESUMO

The aerobic respiratory chain of the Gram-positive Corynebacterium glutamicum involves a bc(1) complex with a diheme cytochrome c(1) and a cytochrome aa(3) oxidase but no additional c-type cytochromes. Here we show that the two enzymes form a supercomplex, because affinity chromatography of either strep-tagged cytochrome b (QcrB) or strep-tagged subunit I (CtaD) of cytochrome aa(3) always resulted in the copurification of the subunits of the bc(1) complex (QcrA, QcrB, QcrC) and the aa(3) complex (CtaD, CtaC, CtaE). The isolated bc(1)-aa(3) supercomplexes had quinol oxidase activity, indicating functional electron transfer between cytochrome c(1) and the Cu(A) center of cytochrome aa(3). Besides the known bc(1) and aa(3) subunits, few additional proteins were copurified, one of which (CtaF) was identified as a fourth subunit of cytochrome aa(3). If either of the two CXXCH motifs for covalent heme attachment in cytochrome c(1) was changed to SXXSH, the resulting mutants showed severe growth defects, had no detectable c-type cytochrome, and their cytochrome b level was strongly reduced. This indicates that the attachment of both heme groups to apo-cytochrome c(1) is not only required for the activity but also for the assembly and/or stability of the bc(1) complex.


Assuntos
Corynebacterium/enzimologia , Análise Mutacional de DNA , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cromatografia de Afinidade , Primers do DNA , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...