Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer ; 126(22): 4936-4947, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32870522

RESUMO

BACKGROUND: LMB-100 is an antibody-toxin conjugate with an antimesothelin Fab linked to a 24-kilodalton portion of Pseudomonas exotoxin A with mutations that decrease immunogenicity. The objective of the current first-in-human phase 1 study was to determine the maximum tolerated dose (MTD) and safety in patients with advanced solid tumors expressing mesothelin. METHODS: Cohorts of 1 to 7 patients received intravenous LMB-100 at 7 dose levels from 40 µg/kg to 250 µg/kg intravenously on days 1, 3, and 5 of a 21-day cycle. RESULTS: Of the 25 patients accrued, 17 had mesothelioma, 3 each had ovarian or pancreatic cancer, and 2 patients had gastric cancer. Dose-limiting toxicities occurred in 2 of 4 patients treated at a dose of 250 µg/kg (capillary leak syndrome) and in 3 of 7 patients treated at a dose of 170 µg/kg (creatinine increase). The MTD of LMB-100 was 140 µg/kg. Of the 10 patients with mesothelioma who were treated at doses of 170 µg/kg or 140 µg/kg, 8 had stable disease and 2 developed progressive disease. Peak LMB-100 plasma concentrations were dose-dependent during cycle 1. The development of antidrug antibodies decreased LMB-100 blood levels in 8 of 21 patients (38%) who received cycle 2 and 9 of 11 patients (81.8%) who received cycle 3. CONCLUSIONS: The MTD for single-agent LMB-100 was found to be 140 µg/kg given on a schedule of every other day for 3 doses every 3 weeks. Although less immunogenic than the first-generation antimesothelin immunotoxin SS1P, the majority of patients developed antidrug antibodies after 2 cycles, indicating that LMB-100 has limited antitumor efficacy as a single agent. Phase 2 studies of LMB-100 plus pembrolizumab currently are ongoing for patients with mesothelioma and lung cancer. LAY SUMMARY: Mesothelin, a cell surface antigen, is an attractive target for cancer therapy given its limited expression in normal human tissues and high expression in many human cancers. LMB-100 is a recombinant antimesothelin immunotoxin consisting of a humanized antimesothelin antibody fragment fused to a truncated Pseudomonas exotoxin A. In the current study, the authors determined the safety, maximum tolerated dose, and pharmacokinetics of LMB-100, as well as the generation of antidrug antibodies. Ongoing phase 2 clinical trials are evaluating the combination of LMB-100 plus pembrolizumab in patients with treatment-refractory mesothelioma and non-small cell lung cancer.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Imunoconjugados/uso terapêutico , Imunotoxinas/uso terapêutico , Mesotelioma/tratamento farmacológico , Humanos , Imunoconjugados/farmacologia , Imunotoxinas/farmacologia , Mesotelina , Pessoa de Meia-Idade
2.
Clin Cancer Res ; 25(19): 5890-5900, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31285373

RESUMO

PURPOSE: Genetically engineered T cells are powerful anticancer treatments but are limited by safety and specificity issues. We herein describe an MHC-unrestricted modular platform combining autologous T cells, transduced with a targetable synthetic agonistic receptor (SAR), with bispecific antibodies (BiAb) that specifically recruit and activate T cells for tumor killing. EXPERIMENTAL DESIGN: BiAbs of different formats were generated by recombinant expression. T cells were retrovirally transduced with SARs. T-cell activation, proliferation, differentiation, and T-cell-induced lysis were characterized in three murine and human tumor models in vitro and in vivo. RESULTS: Murine T cells transduced with SAR composed of an extracellular domain EGFRvIII fused to CD28 and CD3ζ signaling domains could be specifically recruited toward murine tumor cells expressing EpCAM by anti-EGFRvIII × anti-EpCAM BiAb. BiAb induced selective antigen-dependent activation, proliferation of SAR T cells, and redirected tumor cell lysis. Selectivity was dependent on the monovalency of the antibody for EGFRvIII. We identified FAS ligand as a major mediator of killing utilized by the T cells. Similarly, human SAR T cells could be specifically redirected toward mesothelin-expressing human pancreatic cancer cells. In vivo, treatment with SAR T cells and BiAb mediated antitumoral activity in three human pancreatic cancer cell xenograft models. Importantly, SAR activity, unlike CAR activity, was reversible in vitro and in vivo. CONCLUSIONS: We describe a novel ACT platform with antitumor activity in murine and human tumor models with a distinct mode of action that combines adoptive T-cell therapy with bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Receptores ErbB/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/terapia , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/genética , Molécula de Adesão da Célula Epitelial/imunologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Mesotelina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias Pancreáticas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancers (Basel) ; 11(3)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897808

RESUMO

Antibody-drug conjugates (ADCs) combine the tumor selectivity of antibodies with the potency of cytotoxic small molecules thereby constituting antibody-mediated chemotherapy. As this inherently limits the adverse effects of the chemotherapeutic, such approaches are heavily pursued by pharma and biotech companies and have resulted in four FDA (Food and Drug Administration)-approved ADCs. However, as with other cancer therapies, durable responses are limited by the fact that under cell stress exerted by these drugs, tumors can acquire mechanisms of escape. Resistance can develop against the antibody component of ADCs by down-regulation/mutation of the targeted cell surface antigen or against payload toxicity by up-regulation of drug efflux transporters. Unique resistance mechanisms specific for the mode of action of ADCs have also emerged, like altered internalization or cell surface recycling of the targeted tumor antigen, changes in the intracellular routing or processing of ADCs, and impaired release of the toxic payload into the cytosol. These evasive changes are tailored to the specific nature and interplay of the three ADC constituents: the antibody, the linker, and the payload. Hence, they do not necessarily endow broad resistance to ADC therapy. This review summarizes preclinical and clinical findings that shed light on the mechanisms of acquired resistance to ADC therapies.

4.
Biol Chem ; 400(4): 501-512, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30218597

RESUMO

The functionality of eukaryotic translation elongation factor 2 (eEF2) is modulated by phosphorylation, eEF2 is simultaneously the molecular target of ADP-ribosylating toxins. We analyzed the interplay between phosphorylation and diphthamide-dependent ADP-ribosylation. Phosphorylation does not require diphthamide, eEF2 without it still becomes phosphorylated. ADP-ribosylation not only modifies the H715 diphthamide but also inhibits phosphorylation of S595 located in proximity to H715, and stimulates phosphorylation of T56. S595 can be phosphorylated by CDK2 and CDK1 which affects EEF2K-mediated T56-phosphorylation. Thus, ADP-ribosylation and S595-phosphorylation by kinases occur within the same vicinity and both trigger T56-phosphorylation. Diphthamide is surface-accessible permitting access to ADP-ribosylating enzymes, the adjacent S595 side chain extends into the interior. This orientation is incompatible with phosphorylation, neither allowing kinase access nor phosphate attachment. S595 phosphorylation must therefore be accompanied by structural alterations affecting the interface to ADP-ribosylating toxins. In agreement with that, replacement of S595 with Ala, Glu or Asp prevents ADP-ribosylation. Phosphorylation (starvation) as well as ADP-ribosylation (toxins) inhibit protein synthesis, both affect the S595/H715 region of eEF2, both trigger T57-phosphorylation eliciting similar transcriptional responses. Phosphorylation is short lived while ADP-ribosylation is stable. Thus, phosphorylation of the S595/H715 'modifier region' triggers transient interruption of translation while ADP-ribosylation arrests irreversibly.


Assuntos
ADP-Ribosilação , Quinase do Fator 2 de Elongação/metabolismo , Quinase do Fator 2 de Elongação/genética , Humanos , Células MCF-7 , Modelos Moleculares , Fosforilação
5.
Sci Rep ; 7(1): 18086, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273809

RESUMO

RG7787 is a re-engineered mesothelin-targeted immunotoxin with reduced immunogenicity composed of a humanized anti-mesothelin Fab fragment and a B-cell epitope silenced 24 kD fragment of Pseudomonas exotoxin A. High prevalence of mesothelin-positive cases and a large unmet medical need make ovarian cancer a promising indication for the clinical development of RG7787. However, ovarian cancer patients also frequently have elevated serum levels of the cancer antigen 125 (CA-125). In principle this could pose a problem, since the binding sites for CA-125 and RG7787 on mesothelin were reported to overlap. However, we show here that RG7787 can readily displace even excess amounts of CA-125 in different cellular assays. Moreover when tested in-vitro on a panel of 12 ovarian cancer cell lines, RG7787 had high cytotoxic activity on COV644, Caov-4, and SNU-119 cells and fully inhibited growth of EFO-21, KURAMOCHI, OVSAHO, and Caov-3 cells with potency values ranging from 1 to 86 pM. Finally, we evaluated the in-vivo efficacy of RG7787 in OvCa6668, a patient-derived ovarian cancer model with high levels of CA-125 expression. RG7787 had moderate monotherapy efficacy but in combination with standard chemotherapies (cisplatin, paclitaxel) achieved pronounced tumor regressions. In summary our data support clinical testing of RG7787 in ovarian cancer.


Assuntos
Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Imunoconjugados/uso terapêutico , Imunotoxinas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/farmacologia , Imunotoxinas/farmacologia
6.
Cancer Immunol Res ; 5(8): 685-694, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28674083

RESUMO

Immune checkpoint blockade using antibodies to cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) benefits a limited number of cancer patients. SS1P and LMB-100 are immunotoxins that target mesothelin. We observed delayed responses to SS1P in patients with mesothelioma suggesting that antitumor immunity was induced. Our goal was to stimulate antitumor immunity by combining SS1P or LMB-100 with anti-CTLA-4. We constructed a BALB/c breast cancer cell line expressing human mesothelin (66C14-M), which was implanted in one or two locations. SS1P or LMB-100 was injected directly into established tumors and anti-CTLA-4 administered i.p. In mice with two tumors, one tumor was injected with immunotoxin and the other was not. The complete regression rate was 86% for the injected tumors and 53% for the uninjetced tumors. No complete regressions occurred when drugs were given separately. In regressing tumors, dying and dead tumor cells were intermingled with PMNs and surrounded by a collar of admixed eosinophils and mononuclear cells. Tumor regression was associated with increased numbers of tumor-infiltrating CD8+ cells and blocked by administration of antibodies to CD8. Surviving mice were protected from tumor rechallenge by 66C14 cells not expressing mesothelin, indicating the development of antitumor immunity. The antitumor effect was abolished when a mutant noncytotoxic variant was used instead of LMB-100, showing that the antitumor response is not mediated by recognition of a foreign bacterial protein. Our findings support developing a therapy composed of immunotoxins and checkpoint inhibitors for patients. Cancer Immunol Res; 5(8); 685-94. ©2017 AACR.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Neoplasias da Mama/terapia , Antígeno CTLA-4/imunologia , Proteínas Ligadas por GPI/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/imunologia , Humanos , Imunotoxinas/administração & dosagem , Mesotelina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Proc Natl Acad Sci U S A ; 113(38): 10666-71, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601652

RESUMO

RG7787 is a mesothelin-targeted immunotoxin designed to have low-immunogenicity, high-cytotoxic activity and fewer side effects. RG7787 kills many types of mesothelin-expressing cancer cells lines and causes tumor regressions in mice. Safety and immunogenicity of RG7787 is now being assessed in a phase I trial. To enhance the antitumor activity of RG7787, we screened for clinically used drugs that can synergize with RG7787. Actinomycin D is a potent transcription inhibitor that is used for treating several cancers. We report here that actinomycin D and RG7787 act synergistically to kill many mesothelin-positive cancer cell lines and produce major regressions of pancreatic and stomach cancer xenografts. Analyses of RNA expression show that RG7787 or actinomycin D alone and together increase levels of TNF/TNFR family members and NF-κB-regulated genes. Western blots revealed the combination changed apoptotic protein levels and enhanced cleavage of Caspases and PARP.


Assuntos
Dactinomicina/administração & dosagem , Imunoconjugados/administração & dosagem , Imunotoxinas/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Mesotelina , Camundongos , NF-kappa B/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Protein Eng Des Sel ; 29(10): 467-475, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27578890

RESUMO

Monoclonal antibody-based targeted tumor therapy has greatly improved treatment options for patients. Antibodies against oncogenic receptor tyrosine kinases (RTKs), especially the ErbB receptor family, are prominent examples. However, long-term efficacy of such antibodies is limited by resistance mechanisms. Tumor evasion by a priori or acquired activation of other kinases is often causative for this phenomenon. These findings led to an increasing number of combination approaches either within a protein family, e.g. the ErbB family or by targeting RTKs of different phylogenetic origin like HER1 and cMet or HER1 and IGF1R. Progress in antibody engineering technology enabled generation of clinical grade bispecific antibodies (BsAbs) to design drugs inherently addressing such resistance mechanisms. Limited data are available on multi-specific antibodies targeting three or more RTKs. In the present study, we have evaluated the cloning, eukaryotic expression and purification of tetraspecific, tetravalent Fc-containing antibodies targeting HER3, cMet, HER1 and IGF1R. The antibodies are based on the combination of single-chain Fab and Fv fragments in an IgG1 antibody format enhanced by the knob-into-hole technology. They are non-agonistic and inhibit tumor cell growth comparable to the combination of four parental antibodies. Importantly, TetraMabs show improved apoptosis induction and tumor growth inhibition over individual monospecific or BsAbs in cellular assays. In addition, a mimicry assay to reflect heterogeneous expression of antigens in a tumor mass was established. With this novel in vitro assay, we can demonstrate the superiority of a tetraspecific antibody to bispecific tumor antigen-binding antibodies in early pre-clinical development.


Assuntos
Terapia de Alvo Molecular/métodos , Receptores Proteína Tirosina Quinases/imunologia , Anticorpos de Cadeia Única/imunologia , Especificidade de Anticorpos , Apoptose/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Ativação Enzimática , Humanos , Engenharia de Proteínas , Receptores Proteína Tirosina Quinases/metabolismo , Anticorpos de Cadeia Única/genética
9.
Mol Oncol ; 10(8): 1317-29, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27507537

RESUMO

Mesothelin overexpression in lung adenocarcinomas correlates with the presence of activating KRAS mutations and poor prognosis. Hence SS1P, a mesothelin-targeted immunotoxin, could offer valuable treatment options for these patients, but its use in solid tumor therapy is hampered by high immunogenicity and non-specific toxicity. To overcome both obstacles we developed RG7787, a de-immunized cytotoxic fusion protein comprising a humanized SS1 Fab fragment and a truncated, B-cell epitope silenced, 24 kD fragment of Pseudomonas exotoxin A (PE24). Reactivity of RG7787 with sera from immunotoxin-treated patients was >1000 fold reduced. In vitro RG7787 inhibited cell viability of lung cancer cell lines with picomolar potency. The pharmacokinetic properties of RG7787 in rodents were comparable to SS1P, yet it was tolerated up to 10 fold better without causing severe vascular leak syndrome or hepatotoxicity. A pharmacokinetic/pharmacodynamic model developed based on NCI-H596 xenograft studies showed that for RG7787 and SS1P, their in vitro and in vivo potencies closely correlate. At optimal doses of 2-3 mg/kg RG7787 is more efficacious than SS1P. Even large, well established tumors (600 mm(3)) underwent remission during three treatment cycles with RG7787. Also in two patient-derived lung cancer xenograft models, Lu7336 and Lu7187, RG7787 showed anti-tumor efficacy. In monotherapy two treatment cycles were moderately efficacious in the Lu7336 model but showed good anti-tumor activity in the KRAS mutant Lu7187 model (26% and 80% tumor growth inhibition, respectively). Combination of RG7787 with standard chemotherapies further enhanced efficacy in both models achieving near complete eradication of Lu7187 tumors.


Assuntos
ADP Ribose Transferases/uso terapêutico , Toxinas Bacterianas/uso terapêutico , Exotoxinas/uso terapêutico , Proteínas Ligadas por GPI/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Engenharia de Proteínas , Pseudomonas/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Fatores de Virulência/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Pulmonares/patologia , Mesotelina , Camundongos SCID , Modelos Biológicos , Ratos , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Exotoxina A de Pseudomonas aeruginosa
10.
Proc Natl Acad Sci U S A ; 112(34): 10732-7, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261303

RESUMO

The diphthamide on human eukaryotic translation elongation factor 2 (eEF2) is the target of ADP ribosylating diphtheria toxin (DT) and Pseudomonas exotoxin A (PE). This modification is synthesized by seven dipthamide biosynthesis proteins (DPH1-DPH7) and is conserved among eukaryotes and archaea. We generated MCF7 breast cancer cell line-derived DPH gene knockout (ko) cells to assess the impact of complete or partial inactivation on diphthamide synthesis and toxin sensitivity, and to address the biological consequence of diphthamide deficiency. Cells with heterozygous gene inactivation still contained predominantly diphthamide-modified eEF2 and were as sensitive to PE and DT as parent cells. Thus, DPH gene copy number reduction does not affect overall diphthamide synthesis and toxin sensitivity. Complete inactivation of DPH1, DPH2, DPH4, and DPH5 generated viable cells without diphthamide. DPH1ko, DPH2ko, and DPH4ko harbored unmodified eEF2 and DPH5ko ACP- (diphthine-precursor) modified eEF2. Loss of diphthamide prevented ADP ribosylation of eEF2, rendered cells resistant to PE and DT, but does not affect sensitivity toward other protein synthesis inhibitors, such as saporin or cycloheximide. Surprisingly, cells without diphthamide (independent of which the DPH gene compromised) were presensitized toward nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) and death-receptor pathways without crossing lethal thresholds. In consequence, loss of diphthamide rendered cells hypersensitive toward TNF-mediated apoptosis. This finding suggests a role of diphthamide in modulating NF-κB, death receptor, or apoptosis pathways.


Assuntos
Apoptose/fisiologia , Histidina/análogos & derivados , NF-kappa B/fisiologia , Fator 2 de Elongação de Peptídeos/química , Receptores de Morte Celular/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Bactérias/farmacologia , Neoplasias da Mama/patologia , Carbono-Nitrogênio Ligases/deficiência , Carbono-Nitrogênio Ligases/fisiologia , Linhagem Celular Tumoral , Toxina Diftérica/farmacologia , Feminino , Dosagem de Genes , Técnicas de Inativação de Genes , Histidina/biossíntese , Histidina/deficiência , Humanos , Proteínas de Neoplasias/fisiologia , Processamento de Proteína Pós-Traducional
11.
Sci Rep ; 5: 10832, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26111884

RESUMO

Solid tumors present challenges for delivery of protein therapeutics; current methods cannot quantify the functional effects of these agents. RG7787 (anti-mesothelin recombinant immunotoxin) is highly cytotoxic to pancreatic cancer cell lines, but with limited activity in vivo. To investigate this discrepancy, we developed a flow cytometry method to quantify the amount of RG7787 internalized per cell in tumors and used it to analyze tumor responses by determining the number of molecules of RG7787 internalized per cell in vivo and comparing it to that needed to kill cells in vitro. At a maximum tolerated dose of 7.5 mg/kg, tumor cells in vivo internalized a wide range of RG7787 with the average amount equivalent to the amount that induced growth arrest in vitro. However, 20% of cells accumulated 20,300 ITs per cell, sufficient to kill cells in vitro. At 2.5 mg/kg the top 20% of cells internalized enough RG7787 to only induce growth arrest. These data are in agreement with tumor responses; 22% regression following a 7.5 mg/kg dose and growth stabilization following 2.5 mg/kg. Comparing amounts of RIT delivered in vivo and in vitro can explain tumor responses and should facilitate the development of more active immunotoxins and other antibody based agents.


Assuntos
Imunoconjugados/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carbocianinas/química , Linhagem Celular Tumoral , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Imunoconjugados/uso terapêutico , Imunoconjugados/toxicidade , Mesotelina , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transplante Heterólogo
12.
Glycobiology ; 25(8): 902-17, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25978997

RESUMO

Stage-specific embryonic antigen-4 (SSEA-4) is a glycosphingolipid, which is overexpressed in some cancers and has been linked to disease progression. However, little is known about the functions of SSEA-4 and the characteristics of SSEA-4 expressing tumor cells. Our studies identified SSEA-4 expression on a subpopulation of cells in many solid tumor cell lines but not in leukemic cell lines. Fluorescence-activated cell sorting-sorted SSEA-4(+) prostate cancer cells formed fibroblast-like colonies with limited cell-cell contacts, whereas SSEA-4(-) cells formed cobblestone-like epithelial colonies. Only colonies derived from SSEA-4(+) cells were enriched for pluripotent embryonic stem cell markers. Moreover, major epithelial cell-associated markers Claudin-7, E-cadherin, ESRP1 and GRHL2 were down-regulated in the SSEA-4(+) fraction of DU145 and HCT-116 cells. Similar to cell lines, SSEA-4(+) primary prostate tumor cells also showed down-regulation of epithelial cell-associated markers. In addition, they showed up-regulation of epithelial-to-mesenchymal transition as well as mesenchymal markers. Furthermore, SSEA-4(+) cells escape from adhesive colonies spontaneously and form invadopodia-like migratory structures, in which SSEA-4, cortactin as well as active pPI3K, pAkt and pSrc are enriched and colocalized. Finally, SSEA-4(+) cells displayed strong tumorigenic ability and stable knockdown of SSEA-4 synthesis resulted in decreased cellular adhesion to different extracellular matrices. In conclusion, we introduce SSEA-4 as a novel marker to identify heterogeneous, invasive subpopulations of tumor cells. Moreover, increased cell-surface SSEA-4 expression is associated with the loss of cell-cell interactions and the gain of a migratory phenotype, suggesting an important role of SSEA-4 in cancer invasion by influencing cellular adhesion to the extracellular matrix.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Próstata/metabolismo , Antígenos Embrionários Estágio-Específicos/genética , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Claudinas/genética , Claudinas/metabolismo , Cortactina/genética , Cortactina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Antígenos Embrionários Estágio-Específicos/química , Antígenos Embrionários Estágio-Específicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
13.
J Natl Cancer Inst ; 107(1): 364, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25424197

RESUMO

BACKGROUND: One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy. METHODS: SV40 T antigen-specific T cells from T cell receptor (TCR)-I-transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein. Targeting and killing by combined ACT and anti-EGFR-anti-EpCAM BiAb therapy was analyzed in C57Bl/6 mice (n = six to 12 per group) carrying subcutaneous tumors of the murine gastric cancer cell line GC8 (SV40(+) and EpCAM(+)). Anti-EGFR x anti-c-Met BiAb was used for targeting of human tumor-specific T cells to c-Met(+) human tumor cell lines. Differences between experimental conditions were analyzed using the Student's t test, and differences in tumor growth with two-way analysis of variance. Overall survival was analyzed by log-rank test. All statistical tests were two-sided. RESULTS: The BiAb linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. In vivo, the combination of ACT and Biab produced increased T cell infiltration of tumors, retarded tumor growth, and prolonged survival compared with ACT with a control antibody (median survival 95 vs 75 days, P < .001). In human cells, this strategy enhanced recruitment of human EGFR-transduced T cells to immobilized c-Met and recognition of tyrosinase(+) melanoma cells by TCR-, as well as of CEA(+) colon cancer cells by chimeric antigen receptor (CAR)-modified T cells. CONCLUSIONS: BiAb recruitment of tumor-specific T cells transduced with a marker antigen to tumor cells may enhance efficacy of ACT.


Assuntos
Transferência Adotiva , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/terapia , Linfócitos T/imunologia , Análise de Variância , Animais , Antígenos de Neoplasias/imunologia , Moléculas de Adesão Celular/imunologia , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Receptores ErbB/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-met/imunologia , Transdução Genética
14.
Mol Cancer Ther ; 13(11): 2653-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25239937

RESUMO

The RG7787 mesothelin-targeted recombinant immunotoxin (RIT) consists of an antibody fragment targeting mesothelin (MSLN) fused to a 24-kD fragment of Pseudomonas exotoxin A for cell killing. Compared with prior RITs, RG7787 has improved properties for clinical development including decreased nonspecific toxicity and immunogenicity and resistance to degradation by lysosomal proteases. MSLN is a cell surface glycoprotein highly expressed by many solid tumor malignancies. New reports have demonstrated that MSLN is expressed by a significant percentage of triple-negative breast and gastric cancer clinical specimens. Here, panels of triple-negative breast and gastric cancer cell lines were tested for surface MSLN expression, and for sensitivity to RG7787 in vitro and in animal models. RG7787 produced >95% cell killing of the HCC70 and SUM149 breast cancer cell lines in vitro with IC50 < 100 pmol/L. RG7787 was also effective against gastric cancer cell lines MKN28, MKN45, and MKN74 in vitro, with subnanomolar IC50s. In a nude mouse model, RG7787 treatment (2.5 mg/kg i.v. qod ×3-4) resulted in a statistically significant 41% decrease in volumes of HCC70 xenograft tumors (P < 0.0001) and an 18% decrease in MKN28 tumors (P < 0.0001). Pretreatment with paclitaxel (50 mg/kg i.p.) enhanced efficacy, producing 88% and 70% reduction in tumor volumes for HCC70 and MKN28, respectively, a statistically significant improvement over paclitaxel alone (P < 0.0001 for both). RG7787 merits clinical testing for triple-negative breast and gastric cancers.


Assuntos
Imunoconjugados/farmacologia , Imunotoxinas/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Mesotelina , Camundongos , Camundongos Nus , Neoplasias Gástricas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Cancer Ther ; 13(8): 2040-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24928849

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, and new therapies are needed. RG7787 is a novel low-immunogenic antimesothelin recombinant immunotoxin (RIT), engineered to overcome the limitations of SS1P, a RIT now in clinical trials. In vitro activity was evaluated on five established PDAC cell lines (KLM-1, AsPC-1, BxPC-3, Panc 3.014, and PK-1) and on PDAC cells directly established from a patient tumor (GUMC108). RG7787 had subnanomolar IC50s in most cell lines, and was significantly more active than SS1P in GUMC108, KLM-1, and Panc 3.014 cells. GUMC108 was most sensitive, with RG7787 killing >99% of the cells. In a subcutaneous KLM-1 xenograft mouse model, two cycles of 3 × 2.5 mg/kg RG7787 QOD combined with two cycles of 1 × 50 mg/kg paclitaxel induced near-complete responses, with all tumors regressing below 5 mm(3) within 30 days after therapy was initiated (>95% decrease) and no significant growth increase for at least another 3 weeks. RG7787 alone gave limited but significant regressions and paclitaxel by itself arrested tumor growth. Quantifying the uptake of Alexa Fluor 647-labeled RG7787 in tumors showed that the RIT reached only 45% of KLM-1 cells, accounting in part for the limited responses. Paclitaxel did not improve RG7787 uptake, which thus cannot explain the beneficial effect of the combination therapy. In conclusion, RG7787 has high cytotoxic activity on PDAC cell lines as well as on primary patient cells. In vivo, this novel RIT gives durable near-complete tumor responses when combined with paclitaxel. RG7787 merits further evaluation for the treatment of PDAC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoconjugados/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacocinética , Apoptose , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunoconjugados/farmacocinética , Mesotelina , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
EMBO Mol Med ; 5(12): 1821-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24293316

RESUMO

The secreted factor netrin-1 is upregulated in a fraction of human cancers as a mechanism to block apoptosis induced by netrin-1 dependence receptors DCC and UNC5H. Targeted therapies aiming to trigger tumour cell death via netrin-1/receptors interaction interference are under preclinical evaluation. We show here that Doxorubicin, 5-Fluorouracil, Paclitaxel and Cisplatin treatments trigger, in various human cancer cell lines, an increase of netrin-1 expression which is accompanied by netrin-1 receptors increase. This netrin-1 upregulation which appears to be p53-dependent is a survival mechanism as netrin-1 silencing by siRNA is associated with a potentiation of cancer cell death upon Doxorubicin treatment. We show that candidate drugs interfering with netrin-1/netrin-1 receptors interactions potentiate Doxorubicin, Cisplatin or 5-Fluorouracil-induced cancer cell death in vitro. Moreover, in a model of xenografted nude mice, we show that systemic Doxorubicin treatment triggers netrin-1 upregulation in the tumour but not in normal organs, enhancing and prolonging tumour growth inhibiting effect of a netrin-1 interfering drug. Together these data suggest that combining conventional chemotherapies with netrin-1 interference could be a promising therapeutic approach.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/toxicidade , Doxorrubicina/uso terapêutico , Doxorrubicina/toxicidade , Feminino , Fluoruracila/toxicidade , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Fatores de Crescimento Neural/antagonistas & inibidores , Fatores de Crescimento Neural/genética , Receptores de Netrina , Netrina-1 , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/metabolismo , Transplante Heterólogo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Regulação para Cima
17.
Mol Oncol ; 7(6): 1142-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24055141

RESUMO

CUB-domain-containing-protein-1 (CDCP1) is an integral membrane protein whose expression is up-regulated in various cancer types. Although high CDCP1 expression has been correlated with poor prognosis in lung, breast, pancreas, and renal cancer, its functional role in tumor formation or progression is incompletely understood. So far it has remained unclear, whether CDCP1 is a useful target for antibody therapy of cancer and what could be a desired mode of action for a therapeutically useful antibody. To shed light on these questions, we have investigated the cellular effects of a therapeutic antibody candidate (RG7287). In focus formation assays, prolonged RG7287 treatment prevented the loss of contact inhibition caused by co-transformation of NIH3T3 cells with CDCP1 and Src. In a xenograft study, MCF7 cells stably overexpressing CDCP1 reached the predefined tumor volume faster than the parental MCF7 cells lacking endogenous CDCP1. This tumor growth advantage was abolished by RG7287 treatment. In vitro, RG7287 induced rapid tyrosine phosphorylation of CDCP1 by Src, which was accompanied by translocation of CDCP1 to a Triton X-100 insoluble fraction of the plasma membrane. Triggering these effects required bivalency of the antibody suggesting that it involves CDCP1 dimerization or clustering. However, this initial activation of CDCP1 was only transient and prolonged RG7287 treatment induced internalization and down-regulation of CDCP1 in different cancer cell lines. Antibody stimulated CDCP1 degradation required Src activity and was proteasome dependent. Also in three different xenograft models with endogenous CDCP1 expression RG7287 treatment resulted in significant tumor growth inhibition concomitant with substantially reduced CDCP1 levels as judged by immunohistochemistry and Western blotting. Thus, despite transiently activating CDCP1 signaling, the RG7287 antibody has a therapeutically useful mode of action.


Assuntos
Anticorpos Antineoplásicos/farmacologia , Antígenos CD , Antígenos de Neoplasias , Moléculas de Adesão Celular , Membrana Celular/metabolismo , Glicoproteínas de Membrana , Proteínas de Neoplasias , Neoplasias Experimentais , Proteólise/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/patologia , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cancer Ther ; 12(10): 2031-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23873847

RESUMO

We report the first preclinical in vitro and in vivo comparison of GA101 (obinutuzumab), a novel glycoengineered type II CD20 monoclonal antibody, with rituximab and ofatumumab, the two currently approved type I CD20 antibodies. The three antibodies were compared in assays measuring direct cell death (AnnexinV/PI staining and time-lapse microscopy), complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and internalization. The models used for the comparison of their activity in vivo were SU-DHL4 and RL xenografts. GA101 was found to be superior to rituximab and ofatumumab in the induction of direct cell death (independent of mechanical manipulation required for cell aggregate disruption formed by antibody treatment), whereas it was 10 to 1,000 times less potent in mediating CDC. GA101 showed superior activity to rituximab and ofatumumab in ADCC and whole-blood B-cell depletion assays, and was comparable with these two in ADCP. GA101 also showed slower internalization rate upon binding to CD20 than rituximab and ofatumumab. In vivo, GA101 induced a strong antitumor effect, including complete tumor remission in the SU-DHL4 model and overall superior efficacy compared with both rituximab and ofatumumab. When rituximab-pretreated animals were used, second-line treatment with GA101 was still able to control tumor progression, whereas tumors escaped rituximab treatment. Taken together, the preclinical data show that the glyoengineered type II CD20 antibody GA101 is differentiated from the two approved type I CD20 antibodies rituximab and ofatumumab by its overall preclinical activity, further supporting its clinical investigation.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/efeitos adversos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Rituximab , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Res ; 73(16): 5183-94, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23780344

RESUMO

The EGF receptor (EGFR) HER3 is emerging as an attractive cancer therapeutic target due to its central position in the HER receptor signaling network. HER3 amplifies phosphoinositide 3-kinase (PI3K)-driven tumorigenesis and its upregulation in response to other anti-HER therapies has been implicated in resistance to them. Here, we report the development and characterization of RG7116, a novel anti-HER3 monoclonal antibody (mAb) designed to block HER3 activation, downregulate HER3, and mediate enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) via glycoengineering of the Fc moiety. Biochemical studies and X-ray crystallography revealed that RG7116 bound potently and selectively to domain 1 of human HER3. Heregulin binding was prevented by RG7116 at concentrations more than 1 nmol/L as was nearly complete inhibition of HER3 heterodimerization and phosphorylation, thereby preventing downstream AKT phosphorylation. In vivo RG7116 treatment inhibited xenograft tumor growth up to 90% relative to controls in a manner accompanied by downregulation of cell surface HER3. RG7116 efficacy was further enhanced in combination with anti-EGFR (RG7160) or anti-HER2 (pertuzumab) mAbs. Furthermore, the ADCC potency of RG7116 was enhanced compared with the nonglycoengineered parental antibody, both in vitro and in orthotopic tumor xenograft models, where an increased median survival was documented. ADCC degree achieved in vitro correlated with HER3 expression levels on tumor cells. In summary, the combination of strong signaling inhibition and enhanced ADCC capability rendered RG7116 a highly potent HER3-targeting agent suitable for clinical development.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Glicoproteínas/farmacologia , Receptor ErbB-3/metabolismo , Animais , Anticorpos Monoclonais Humanizados/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Feminino , Glicoproteínas/imunologia , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...