Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 28(5): 884-8, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26829168

RESUMO

Defect-free mismatched heterostructures on Si substrates are produced by an innovative strategy. The strain relaxation is engineered to occur elastically rather than plastically by combining suitable substrate patterning and vertical crystal growth with compositional grading. Its validity is proven both experimentally and theoretically for the pivotal case of SiGe/Si(001).

2.
Adv Mater ; 25(32): 4408-12, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23788016

RESUMO

An innovative strategy in dislocation analysis, based on comparison between continuous and tessellated film, demonstrates that vertical dislocations, extending straight up to the surface, easily dominate in thick Ge layers on Si(001) substrates. The complete elimination of dislocations is achieved by growing self-aligned and self-limited Ge microcrystals with fully faceted growth fronts, as demonstrated by AFM extensive etch-pit counts.

3.
ACS Appl Mater Interfaces ; 5(9): 3581-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23578059

RESUMO

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Óxido Ferroso-Férrico/farmacocinética , Glioblastoma/metabolismo , Nanopartículas de Magnetita/química , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , DNA/metabolismo , Células Endoteliais/química , Células Endoteliais/citologia , Óxido Ferroso-Férrico/administração & dosagem , Óxido Ferroso-Férrico/química , Glioblastoma/química , Humanos , Nanopartículas de Magnetita/administração & dosagem , Modelos Biológicos , Compostos de Silício
4.
Science ; 335(6074): 1330-4, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22422978

RESUMO

Quantum structures made from epitaxial semiconductor layers have revolutionized our understanding of low-dimensional systems and are used for ultrafast transistors, semiconductor lasers, and detectors. Strain induced by different lattice parameters and thermal properties offers additional degrees of freedom for tailoring materials, but often at the expense of dislocation generation, wafer bowing, and cracks. We eliminated these drawbacks by fast, low-temperature epitaxial growth of Ge and SiGe crystals onto micrometer-scale tall pillars etched into Si(001) substrates. Faceted crystals were shown to be strain- and defect-free by x-ray diffraction, electron microscopy, and defect etching. They formed space-filling arrays up to tens of micrometers in height by a mechanism of self-limited lateral growth. The mechanism is explained by reduced surface diffusion and flux shielding by nearest-neighbor crystals.

5.
J Mol Recognit ; 24(3): 446-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21504022

RESUMO

Atomic force microscopy (AFM) investigations of living cells provide new information in both biology and medicine. However, slow cell dynamics and the need for statistically significant sample sizes mean that data collection can be an extremely lengthy process. We address this problem by parallelizing AFM experiments using a two-dimensional cantilever array, instead of a single cantilever. We have developed an instrument able to operate a two-dimensional cantilever array, to perform topographical and mechanical investigations in both air and liquid. Deflection readout for all cantilevers of the probe array is performed in parallel and online by interferometry. Probe arrays were microfabricated in silicon nitride. Proof-of-concept has been demonstrated by analyzing the topography of hard surfaces and fixed cells in parallel, and by performing parallel force spectroscopy on living cells. These results open new research opportunities in cell biology by measuring the adhesion and elastic properties of a large number of cells. Both properties are essential parameters for research in metastatic cancer development.


Assuntos
Microscopia de Força Atômica/métodos , Fenômenos Biomecânicos , Adesão Celular/fisiologia , Biologia Celular
6.
Nanotechnology ; 20(48): 485303, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19880976

RESUMO

Here we show a method for patterning a thin metal film using self-assembled block-copolymer micelles monolayers as a template. The obtained metallic mask is transferred by reactive ion etching in silicon oxide, silicon and silicon nitride substrates, thus fabricating arrays of hexagonally packed nanopores with tunable diameters, interspacing and aspect ratios. This technology is compatible with integration into a standard microtechnology sequence for wafer-scale fabrication of ultrathin silicon nitride nanoporous membranes with 80 nm mean pore diameter.

7.
Nano Lett ; 9(6): 2501-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19453133

RESUMO

We describe the fluidFM, an atomic force microscope (AFM) based on hollow cantilevers for local liquid dispensing and stimulation of single living cells under physiological conditions. A nanofluidic channel in the cantilever allows soluble molecules to be dispensed through a submicrometer aperture in the AFM tip. The sensitive AFM force feedback allows controlled approach of the tip to a sample for extremely local modification of surfaces in liquid environments. It also allows reliable discrimination between gentle contact with a cell membrane or its perforation. Using these two procedures, dyes have been introduced into individual living cells and even selected subcellular structures of these cells. The universality and versatility of the fluidFM will stimulate original experiments at the submicrometer scale not only in biology but also in physics, chemistry, and material science.


Assuntos
Membrana Celular/fisiologia , Microinjeções/métodos , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Animais , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Camundongos , Ratos
8.
Anal Chem ; 74(20): 5243-50, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12403577

RESUMO

A microchip-based flow confinement method for rapid delivery of small sample volumes to sensor surfaces is described. For flow confinement, a sample flow is joined with a perpendicular makeup flow of water or sample medium. Under laminar flow conditions, the makeup flow confines the sample into a thin layer above the sensing area and increases its velocity. This can benefit mass transport limited processes such as DNA hybridization or heterogeneous immunoassays. For proof of concept, this method was applied to a high-affinity immunoassay with excess capture antibody. Rabbit IgG was immobilized onto a silicon nitride waveguide. Cy5-labeled anti-rabbit IgG was hydrodynamically pumped over the immobilized zone through an attached 3D-PDMS flow cell with 20-microm-deep microchannels. The degree of confinement was adjusted through the volume flow rate of the confining flow. Evanescent field-based fluorescence detection enabled monitoring of the binding event. Assays were allowed to reach equilibrium to enable sensorgram normalization for inter-run comparison. The corresponding assay completion times could be reduced from 55 min for static drop conditions to 13 min for 25:1 flow confinement (ratio of confining to sample flow). For typical analytical applications, where equilibrium formation is not required, the faster response should translate to very short analysis times. Concurrently with the faster binding, sample consumption was reduced by 96% compared to conventional whole-channel sample delivery. Diffusional loss of analyte into the confining layer was identified as the main limitation of flow confinement, particularly for long sensing pads.


Assuntos
Técnicas Biossensoriais , Imunoensaio/instrumentação , Difusão , Imunoglobulina G/química , Microcomputadores , Microscopia de Fluorescência , Reprodutibilidade dos Testes , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...