Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892135

RESUMO

Podophyllotoxin (PPT) is an active pharmaceutical ingredient (API) with established antitumor potential. However, due to its systemic toxicity, its use is restricted to topical treatment of anogenital warts. Less toxic PPT derivatives (e.g., etoposide and teniposide) are used intravenously as anticancer agents. PPT has been exploited as a scaffold of new potential therapeutic agents; however, fewer studies have been conducted on the parent molecule than on its derivatives. We have undertaken a study of ultrastructural changes induced by PPT on HaCaT keratinocytes. We have also tracked the intracellular localization of PPT using its fluorescent derivative (PPT-FL). Moreover, we performed molecular docking of both PPT and PPT-FL to compare their affinity to various binding sites of tubulin. Using the Presto blue viability assay, we established working concentrations of PPT in HaCaT cells. Subsequently, we have used selected concentrations to determine PPT effects at the ultrastructural level. Dynamics of PPT distribution by confocal microscopy was performed using PPT-FL. Molecular docking calculations were conducted using Glide. PPT induces a time-dependent cytotoxic effect on HaCaT cells. Within 24 h, we observed the elongation of cytoplasmic processes, formation of cytoplasmic vacuoles, progressive ER stress, and shortening of the mitochondrial long axis. After 48 h, we noticed disintegration of the cell membrane, progressive vacuolization, apoptotic/necrotic vesicles, and a change in the cell nucleus's appearance. PPT-FL was detected within HaCaT cells after ~10 min of incubation and remained within cells in the following measurements. Molecular docking confirmed the formation of a stable complex between tubulin and both PPT and PPT-FL. However, it was formed at different binding sites. PPT is highly toxic to normal human keratinocytes, even at low concentrations. It promptly enters the cells, probably via endocytosis. At lower concentrations, PPT causes disruptions in both ER and mitochondria, while at higher concentrations, it leads to massive vacuolization with subsequent cell death. The novel derivative of PPT, PPT-FL, forms a stable complex with tubulin, and therefore, it is a useful tracker of intracellular PPT binding and trafficking.


Assuntos
Células HaCaT , Queratinócitos , Simulação de Acoplamento Molecular , Podofilotoxina , Tubulina (Proteína) , Humanos , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Corantes Fluorescentes/química , Sítios de Ligação , Estresse do Retículo Endoplasmático/efeitos dos fármacos
2.
Nat Immunol ; 24(12): 2108-2120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932457

RESUMO

Regulatory T cells (Treg cells) are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which Treg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying Treg cells from different tissue origins under systemic autoimmunity, in the present study we show that interleukin (IL)-27 is specifically produced by intestinal Treg cells to regulate helper T17 cell (TH17 cell) immunity. Selectively increased intestinal TH17 cell responses in mice with Treg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83+CD62Llo Treg cell subset that is distinct from previously characterized intestinal Treg cell populations as the main IL-27 producers. Collectively, our study uncovers a new Treg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue and provides further mechanistic insights into tissue-specific Treg cell-mediated immune regulation.


Assuntos
Interleucina-27 , Linfócitos T Reguladores , Camundongos , Animais , Linfócitos T Auxiliares-Indutores , Tolerância Imunológica , Imunidade Celular , Células Th17
3.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865314

RESUMO

Regulatory T (Treg) cells are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which Treg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying Treg cells from different tissue origins under systemic autoimmunity, here we show that IL-27 is specifically produced by intestinal Treg cells to regulate Th17 immunity. Selectively increased intestinal Th17 responses in mice with Treg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83+TCF1+ Treg cell subset that is distinct from previously characterized intestinal Treg cell populations as the main IL-27 producers. Collectively, our study uncovers a novel Treg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue, and provides further mechanistic insights into tissue-specific Treg cell-mediated immune regulation.

4.
Oncotarget ; 9(90): 36166-36184, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30546835

RESUMO

As we learn more about how immune responses occur in situ, it is becoming clear that each organ/tissue is characterized with its own anatomy and microenvironment which may affect and even determine the outcome of the immune responses. With emerging data from animal studies showing that regulatory T cells infiltrating non-lymphoid tissues exhibit unique phenotypes and transcriptional signatures and display functions beyond their well-established suppressive roles, there is an urgent need to explore the function of tissue Treg cells in humans. Here we characterized the transcriptome of Treg residing at the human mucosal tissue obtained from the normal area of cancer resections and their peripheral blood counterparts, identifying human lung and colon tissue Treg signature genes and their upstream regulators. Pathway analysis highlighted potential differences in the cross-talk between tissue Treg cells and other non-immune tissue-specific cell types. For example, genes associated with wnt pathway were differentially regulated in lung Treg cells compared to blood or colon indicating a potential role for lung Treg cells in epithelium repair and regeneration. Moreover, we identified several non-coding RNAs specifically expressed by tissue-resident Tregs. These results provide a comprehensive view of lung and colon tissue Treg transcriptional landscape.

6.
Front Mol Neurosci ; 10: 372, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170629

RESUMO

Hydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (Dusp16), which is known to negatively regulate mitogen-activated protein kinases (MAPKs) and which has never previously been implicated in brain development and disorders. Mouse mutants lacking a functional Dusp16 gene (Dusp16-/-) developed fully-penetrant congenital obstructive hydrocephalus together with brain overgrowth. The midbrain aqueduct in Dusp16-/- mutants was obstructed during mid-gestation by an expansion of neural progenitors, and during later gestational stages by neurons resulting in a blockage of cerebrospinal fluid (CSF) outflow. In contrast, the roof plate and ependymal cells developed normally. We identified a delayed cell cycle exit of neural progenitors in Dusp16-/- mutants as a cause of progenitor overproliferation during mid-gestation. At later gestational stages, this expanded neural progenitor pool generated an increased number of neurons associated with enlarged brain volume. Taken together, we found that Dusp16 plays a critical role in neurogenesis by balancing neural progenitor cell proliferation and neural differentiation. Moreover our results suggest that a lack of functional Dusp16 could play a central role in the molecular mechanisms linking brain overgrowth and hydrocephalus.

7.
Pharmacol Ther ; 169: 13-34, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27373855

RESUMO

Asthma is often described as an inflammatory disease of the lungs and in most patients symptomatic treatment with bronchodilators or inhaled corticosteroids is sufficient to control disease. Unfortunately there are a proportion of patients who fail to achieve control despite treatment with the best current treatment. These severe asthma patients have been considered a homogeneous group of patients that represent the unmet therapeutic need in asthma. Many novel therapies have been tested in unselected asthma patients and the effects have often been disappointing, particularly for the highly specific monoclonal antibody-based drugs such as anti-IL-13 and anti-IL-5. More recently, it has become clear that asthma is a syndrome with many different disease drivers. Clinical trials of anti-IL-13 and anti-IL-5 have focused on biomarker-defined patient groups and these trials have driven the clinical progression of these drugs. Work on asthma phenotyping indicates that there is a group of asthma patients where T helper cell type 2 (Th2) cytokines and inflammation predominate and these type 2 high (T2-high) patients can be defined by biomarkers and response to therapies targeting this type of immunity, including anti-IL-5 and anti-IL-13. However, there is still a subset of T2-low patients that do not respond to these new therapies. This T2-low group will represent the new unmet medical need now that the T2-high-targeting therapies have made it to the market. This review will examine the current thinking on patient stratification in asthma and the identification of the T2-high subset. It will also look at the T2-low patients and examine what may be the drivers of disease in these patients.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Broncodilatadores/uso terapêutico , Animais , Antiasmáticos/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Asma/imunologia , Biomarcadores/metabolismo , Broncodilatadores/farmacologia , Citocinas/metabolismo , Humanos , Células Th2/imunologia
8.
J Immunol ; 195(4): 1753-62, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26170386

RESUMO

Plasmacytoid dendritic cells (pDCs) efficiently produce large amounts of type I IFN in response to TLR7 and TLR9 ligands, whereas conventional DCs (cDCs) predominantly secrete high levels of the cytokines IL-10 and IL-12. The molecular basis underlying this distinct phenotype is not well understood. In this study, we identified the MAPK phosphatase Dusp9/MKP-4 by transcriptome analysis as selectively expressed in pDCs, but not cDCs. We confirmed the constitutive expression of Dusp9 at the protein level in pDCs generated in vitro by culture with Flt3 ligand and ex vivo in sorted splenic pDCs. Dusp9 expression was low in B220(-) bone marrow precursors and was upregulated during pDC differentiation, concomitant with established pDC markers. Higher expression of Dusp9 in pDCs correlated with impaired phosphorylation of the MAPK ERK1/2 upon TLR9 stimulation. Notably, Dusp9 was not expressed at detectable levels in human pDCs, although these displayed similarly impaired activation of ERK1/2 MAPK compared with cDCs. Enforced retroviral expression of Dusp9 in mouse GM-CSF-induced cDCs increased the expression of TLR9-induced IL-12p40 and IFN-ß, but not of IL-10. Conditional deletion of Dusp9 in pDCs was effectively achieved in Dusp9(flox/flox); CD11c-Cre mice at the mRNA and protein levels. However, the lack of Dusp9 in pDC did not restore ERK1/2 activation after TLR9 stimulation and only weakly affected IFN-ß and IL-12p40 production. Taken together, our results suggest that expression of Dusp9 is sufficient to impair ERK1/2 activation and enhance IFN-ß expression. However, despite selective expression in pDCs, Dusp9 is not essential for high-level IFN-ß production by these cells.


Assuntos
Células Dendríticas/metabolismo , Fosfatases de Especificidade Dupla/genética , Expressão Gênica , Interferon beta/biossíntese , Animais , Diferenciação Celular/genética , Análise por Conglomerados , Biologia Computacional/métodos , Células Dendríticas/citologia , Células Dendríticas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Interferon beta/genética , Interleucina-12 , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Fosforilação , Reprodutibilidade dos Testes , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Transcriptoma
9.
J Biol Chem ; 289(4): 2112-26, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24311790

RESUMO

MAPK activity is negatively regulated by members of the dual specificity phosphatase (Dusp) family, which differ in expression, substrate specificity, and subcellular localization. Here, we investigated the function of Dusp16/MKP-7 in the innate immune system. The Dusp16 isoforms A1 and B1 were inducibly expressed in macrophages and dendritic cells following Toll-like receptor stimulation. A gene trap approach was used to generate Dusp16-deficient mice. Homozygous Dusp16tp/tp mice developed without gross abnormalities but died perinatally. Fetal liver cells from Dusp16tp/tp embryos efficiently reconstituted the lymphoid and myeloid compartments with Dusp16-deficient hematopoietic cells. However, GM-CSF-induced proliferation of bone marrow progenitors in vitro was impaired in the absence of Dusp16. In vivo challenge with Escherichia coli LPS triggered higher production of IL-12p40 in mice with a Dusp16-deficient immune system. In vitro, Dusp16-deficient macrophages, but not dendritic cells, selectively overexpressed a subset of TLR-induced genes, including the cytokine IL-12. Dusp16-deficient fibroblasts showed enhanced activation of p38 and JNK MAPKs. In macrophages, pharmacological inhibition and siRNA knockdown of JNK1/2 normalized IL-12p40 secretion. Production of IL-10 and its inhibitory effect on IL-12 production were unaltered in Dusp16tp/tp macrophages. Altogether, the Dusp16 gene trap mouse model identifies an essential role in perinatal survival and reveals selective control of differentiation and cytokine production of myeloid cells by the MAPK phosphatase Dusp16.


Assuntos
Fosfatases de Especificidade Dupla/imunologia , Imunidade Inata/fisiologia , Interleucina-10/imunologia , Interleucina-12/imunologia , Macrófagos/imunologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/imunologia , Receptores Toll-Like/imunologia , Animais , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imunidade Inata/efeitos dos fármacos , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-12/biossíntese , Interleucina-12/genética , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Mutantes , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
10.
Mol Syst Biol ; 6: 371, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20531401

RESUMO

Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino acids in cell culture, phosphopeptide enrichment and high-resolution mass spectrometry. In parallel, nascent RNA was profiled to link transcription factor (TF) phosphorylation to TLR4-induced transcriptional activation. We reproducibly identified 1850 phosphoproteins with 6956 phosphorylation sites, two thirds of which were not reported earlier. LPS caused major dynamic changes in the phosphoproteome (24% up-regulation and 9% down-regulation). Functional bioinformatic analyses confirmed canonical players of the TLR pathway and highlighted other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-regulated phosphorylation. Finally, weaving together phosphoproteome and nascent transcriptome data by in silico promoter analysis, we implicated several phosphorylated TFs in primary LPS-controlled gene expression.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Receptor 4 Toll-Like/imunologia , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...