Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(14): 17927-17936, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546411

RESUMO

Gallium nitride quantum dots (GaN QDs) are a promising material for optoelectronics, but the synthesis of freestanding GaN QDs remains a challenge. To date, the size-dependent photonic properties of freestanding GaN QDs have not been reported. Here, we examine the photonic properties exhibited by thin films composed of GaN QDs synthesized by nonequilibrium plasma aerotaxy. Each film exhibited two photoluminescence peaks after exposure to ambient air. The first peak was in the ultraviolet spectral region, and the second peak was in the visible region. Both peak positions depended on the QD size. Our findings, supported by transient absorption spectroscopy experiments, suggest that conduction band to valence band recombination was the cause of the ultraviolet photoluminescence and that recombination between the conduction band and an acceptor level was the cause of visible photoluminescence. Furthermore, we show that coating the surface of fresh QDs with Al2O3 suppressed the visible region photoluminescence, corroborating the conclusion that the photoactive defect was caused by oxidation in air.

2.
Photosynth Res ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737529

RESUMO

Light harvesting by antenna systems is the initial step in a series of electron-transfer reactions in all photosynthetic organisms, leading to energy trapping by reaction center proteins. Cyanobacteria are an ecologically diverse group and are the simplest organisms capable of oxygenic photosynthesis. The primary light-harvesting antenna in cyanobacteria is the large membrane extrinsic pigment-protein complex called the phycobilisome. In addition, cyanobacteria have also evolved specialized membrane-intrinsic chlorophyll-binding antenna proteins that transfer excitation energy to the reaction centers of photosystems I and II (PSI and PSII) and dissipate excess energy through nonphotochemical quenching. Primary among these are the CP43 and CP47 proteins of PSII, but in addition, some cyanobacteria also use IsiA and the prochlorophyte chlorophyll a/b binding (Pcb) family of proteins. Together, these proteins comprise the CP43 family of proteins owing to their sequence similarity with CP43. In this article, we have revisited the evolution of these chlorophyll-binding antenna proteins by examining their protein sequences in parallel with their spectral properties. Our phylogenetic and spectroscopic analyses support the idea of a common ancestor for CP43, IsiA, and Pcb proteins, and suggest that PcbC might be a distant ancestor of IsiA. The similar spectral properties of CP47 and IsiA suggest a closer evolutionary relationship between these proteins compared to CP43.

3.
Biochim Biophys Acta Bioenerg ; 1864(3): 148982, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146928

RESUMO

Photosystem II in oxygenic organisms is a large membrane bound rapidly turning over pigment protein complex. During its biogenesis, multiple assembly intermediates are formed, including the CP43-preassembly complex (pCP43). To understand the energy transfer dynamics in pCP43, we first engineered a His-tagged version of the CP43 in a CP47-less strain of the cyanobacterium Synechocystis 6803. Isolated pCP43 from this engineered strain was subjected to advanced spectroscopic analysis to evaluate its excitation energy dissipation characteristics. These included measurements of steady-state absorption and fluorescence emission spectra for which correlation was tested with Stepanov relation. Comparison of fluorescence excitation and absorptance spectra determined that efficiency of energy transfer from ß-carotene to chlorophyll a is 39 %. Time-resolved fluorescence images of pCP43-bound Chl a were recorded on streak camera, and fluorescence decay dynamics were evaluated with global fitting. These demonstrated that the decay kinetics strongly depends on temperature and buffer used to disperse the protein sample and fluorescence decay lifetime was estimated in 3.2-5.7 ns time range, depending on conditions. The pCP43 complex was also investigated with femtosecond and nanosecond time-resolved absorption spectroscopy upon excitation of Chl a and ß-carotene to reveal pathways of singlet excitation relaxation/decay, Chl a triplet dynamics and Chl a â†’ ß-carotene triplet state sensitization process. The latter demonstrated that Chl a triplet in the pCP43 complex is not efficiently quenched by carotenoids. Finally, detailed kinetic analysis of the rise of the population of ß-carotene triplets determined that the time constant of the carotenoid triplet sensitization is 40 ns.


Assuntos
Complexo de Proteína do Fotossistema II , Synechocystis , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila A , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , beta Caroteno , Cinética , Carotenoides/química , Synechocystis/metabolismo
4.
J Phys Chem Lett ; 14(6): 1650-1655, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36753559

RESUMO

Application of femtosecond time-resolved transient absorption spectroscopy on all-trans and central-cis isomers of two exemplary carotenoids, lutein and spirilloxanthin, performed at room and cryogenic temperatures in the spectral range expanded toward UV revealed new spectroscopic transient features for the cis isomers. Notably, particularly for the central-cis spirilloxanthin, a very distinct additional transient absorption band is observed on the short wavelength side of the main excited-state absorption band of the S1 state, having the same temporal characteristics as the latter one. This band is absent in transient absorption spectra of all-trans isomers, suggesting it could be assigned to "transient cis-peak." Overall, the results show that the "transient" counterpart of the spectral marker of cis-isomers of carotenoids, or the so-called cis-peak, is detectable in the excited-state absorption spectrum and could be attributed to electronic transition from the S1 state. This new transient spectral band could be very useful for spectroscopic experiments targeting the dynamics of carotenoid isomers and their severely distorted forms.

5.
Biochim Biophys Acta Bioenerg ; 1864(2): 148955, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708912

RESUMO

Cyanobacteria inhabiting desert biological soil crusts face the harsh conditions of the desert. They evolved a suite of strategies toward desiccation-hydration cycles mixed with high light irradiations, etc. In this study we purified and characterized the structure and function of Photosystem I (PSI) from Leptolyngbya ohadii, a desiccation-tolerant desert cyanobacterium. We discovered that PSI forms tetrameric (PSI-Tet) aggregate. We investigated it by using sucrose density gradient centrifugation, clear native PAGE, high performance liquid chromatography, mass spectrometry (MS), time-resolved fluorescence (TRF) and time-resolved transient absorption (TA) spectroscopy. MS analysis identified the presence of two PsaB and two PsaL proteins in PSI-Tet and uniquely revealed that PsaLs are N-terminally acetylated in contrast to non-modified PsaL in the trimeric PSI from Synechocystis sp. PCC 6803. Chlorophyll (Chl) a fluorescence decay profiles of the PSI-Tet performed at 77 K revealed two emission bands at ∼690 nm and 725 nm with the former appearing only at early delay time. The main fluorescence emission peak, associated with emission from the low energy Chls a, decays within a few nanoseconds. TA studies demonstrated that the 725 nm emission band is associated with low energy Chls a with absorption band clearly resolved at ∼710 nm at 77 K. In summary, our work suggests that the heterogenous composition of PsaBs and PsaL in PSI-Tet is related with the adaptation mechanisms needed to cope with stressful conditions under which this bacterium naturally grows.


Assuntos
Complexo de Proteína do Fotossistema I , Synechocystis , Complexo de Proteína do Fotossistema I/metabolismo , Dessecação , Análise Espectral , Synechocystis/metabolismo , Espectrometria de Massas
6.
J Phys Chem A ; 126(50): 9353-9365, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36508586

RESUMO

A panchromatic triad and a charge-separation unit are joined in a crossbar architecture to capture solar energy. The panchromatic-absorber triad (T) is comprised of a central free-base porphyrin that is strongly coupled via direct ethyne linkages to two perylene-monoimide (PMI) groups. The charge-separation unit incorporates a free-base or zinc chlorin (C or ZnC) as a hole acceptor (or electron donor) and a perylene-diimide (PDI) as an electron acceptor, both attached to the porphyrin via diphenylethyne linkers. The free-base porphyrin is common to both light-harvesting and charge-separation motifs. The chlorin and PDI also function as ancillary light absorbers, complementing direct excitation of the panchromatic triad to produce the discrete lowest excited state of the array (T*). Attainment of full charge separation across the pentad entails two steps: (1) an initial excited-state hole/electron-transfer process to oxidize the chlorin (and reduce the panchromatic triad) or reduce the PDI (and oxidize the panchromatic triad); and (2) subsequent ground-state electron/hole migration to produce oxidized chlorin and reduced PDI. Full charge separation for pentad ZnC-T-PDI to generate ZnC+-T-PDI- occurs with a quantum yield of ∼30% and mean lifetime ∼1 µs in dimethyl sulfoxide. For C-T-PDI, initial charge separation is followed by rapid charge recombination. The molecular designs and studies reported here reveal the challenges of balancing the demands for charge separation (linker length and composition, excited-state energies, redox potentials, and medium polarity) with the constraints for panchromatic absorption (strong electronic coupling of the porphyrin and two PMI units) for integrated function in solar-energy conversion.


Assuntos
Perileno , Porfirinas , Transporte de Elétrons , Imidas
7.
Photosynth Res ; 154(2): 113-124, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070061

RESUMO

Light-harvesting antennas in photosynthesis capture light energy and transfer it to the reaction centers (RCs) where photochemistry takes place. The sustainable growth of the reef-building corals relies on a constant supply of the photosynthates produced by the endosymbiotic dinoflagellate, belonging to the family of Symbiodiniaceae. The antenna system in this group consists of the water-soluble peridinin-chlorophyll a-protein (PCP) and the intrinsic membrane chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC). In this report, a nonameric acpPC is reported in a dinoflagellate, Fugasium kawagutii (formerly Symbiodinium kawagutii sp. CS-156). We found that extensive biochemical purification altered the oligomerization states of the initially isolated nonameric acpPC. The excitation energy transfer pathways in the acpPC nonamer and its variants were studied using time-resolved fluorescence and time-resolved absorption spectroscopic techniques at 77 K. Compared to the well-characterized trimeric acpPC, the nonameric acpPC contains an 11 nm red-shifted terminal energy emitter and substantially altered excited state lifetimes of Chl a. The observed energetic overlap of the fluorescence terminal energy emitters with the absorption of RCs is hypothesized to enable efficient downhill excitation energy transfer. Additionally, the shortened Chl a fluorescence decay lifetime in the oligomeric acpPC indicate a protective self-relaxation strategy. We propose that the highly-oligomerized acpPC nonamer represents an intact functional unit in the Symbiodiniaceae thylakoid membrane. They perform efficient excitation energy transfer (to RCs), and are under manageable regulations in favor of photoprotection.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/metabolismo , Clorofila A/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Dinoflagellida/metabolismo , Clorofila/metabolismo
8.
J Phys Chem A ; 126(32): 5273-5282, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35921200

RESUMO

The photophysical characterization of two dyes used as scintillators, crystalline para-terphenyl and EJ-276, a plastic heavily doped with 2,5-diphenyloxazole (DPO), was investigated with steady-state absorption, time-resolved emission, and transient absorption at room and cryogenic temperatures. Application of time-gated emission spectroscopy allowed for the measurement of phosphorescence spectra and their temporal dynamics. The photophysical properties of plastic-embedded DPO are not substantially altered compared to those previously determined for this dye in solvents. Notably, the amount of delayed fluorescence is always greater than that of phosphorescence. However, our study of crystalline para-terphenyl suggests that a second phase called ß (perhaps comprising more planar molecules) functions as a triplet trap and decreases the amount of delayed fluorescence relative to phosphorescence. While the "main form" of para-terphenyl dominates absorption, the emissive properties (fluorescence, phosphorescence, and delayed fluorescence) are dominated by the ß-phase. Studies of the para-terphenyl crystal performed with femtosecond time-resolved transient absorption demonstrate that excitation from the main form of the para-terphenyl crystal is promptly transferred to the ß-phase with a time constant of roughly 300 ps. This work provides insight into the photophysical properties of two scintillators utilized to differentiate γ-ray- and neutron-induced signals.

9.
J Phys Chem A ; 126(31): 5107-5125, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35901315

RESUMO

Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple-double-triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.


Assuntos
Fotossíntese , Tetrapirróis , Eletrônica , Transferência de Energia , Análise Espectral , Tetrapirróis/química
10.
Biochim Biophys Acta Bioenerg ; 1863(7): 148580, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654167

RESUMO

Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green­sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.


Assuntos
Complexo de Proteína do Fotossistema II , Synechocystis , Proteínas de Bactérias/metabolismo , Clorofila A/metabolismo , Cisteína/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Valina/metabolismo
11.
Photochem Photobiol ; 98(2): 442-454, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34558720

RESUMO

The formation of cyclobutane pyrimidine dimers (CPDs) by a "dark" pathway in melanocytes has been attributed to chemisensitization by dioxetanes produced from peroxynitrite oxidation of melanin or melanin precursors. These dioxetanes are proposed to decompose to triplet state compounds which sensitize CPD formation by triplet-triplet energy transfer. To determine whether such compounds are capable of sensitizing CPD formation, the putative decomposition products of 2,3-dioxetanes of variously substituted indoles were synthesized and their triplet state energies determined at 77 K. Their ability to photosensitize CPD formation was determined by an enzyme-coupled gel electrophoresis assay in comparison with norfloxacin (NFX) which has the lowest triplet energy known to sensitize CPD formation. The decomposition products of 2,3-dioxetanes of 5-hydroxy and 5,6-dimethoxy indoles used as models for melanin precursors had lower triplet energies and were incapable of photosensitizing CPD formation. Theoretical calculations suggest that the decomposition products of the 2,3-dioxetanes of melanin precursors DHI and DHICA will have similarly low triplet energies. Decomposition products of the 2,3-dioxetanes of indoles lacking oxygen substituents had higher triplet energies than NFX and were capable of photosensitizing CPD formation, suggesting that peroxynitrite oxidation of tryptophan could play a hitherto unrecognized role in the dark pathway to CPDs.


Assuntos
Indóis , Dímeros de Pirimidina , Dano ao DNA , Melanócitos , Ácido Peroxinitroso , Raios Ultravioleta
12.
J Phys Chem A ; 125(36): 7900-7919, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34472866

RESUMO

Panchromatic absorbers have potential applications in molecular-based energy-conversion schemes. A prior porphyrin-perylene dyad (P-PMI, where "MI" denotes monoimide) coupled via an ethyne linker exhibits panchromatic absorption (350-700 nm) and a tetrapyrrole-like lowest singlet excited state with a relatively long singlet excited-state lifetime (τS) and increased fluorescence quantum yield (Φf) versus the parent porphyrin. To explore the extension of panchromaticity to longer wavelengths, three arrays have been synthesized: a chlorin-terrylene dyad (C-TMI), a bacteriochlorin-terrylene dyad (B-TMI), and a perylene-porphyrin-terrylene triad (PMI-P-TMI), where the terrylene, a π-extended homologue of perylene, is attached via an ethyne linker. Characterization of the spectra (absorption and fluorescence), excited-state properties (lifetime, yields, and rate constants of decay pathways), and molecular-orbital characteristics reveals unexpected subtleties. The wavelength of the red-region absorption band increases in the order C-TMI (705 nm) < PMI-P-TMI (749 nm) < B-TMI (774 nm), yet each array exhibits diminished Φf and shortened τS values. The PMI-P-TMI triad in toluene exhibits Φf = 0.038 and τS = 139 ps versus the all-perylene triad (PMI-P-PMI) for which Φf = 0.26 and τS = 2000 ps. The results highlight design constraints for auxiliary pigments with tetrapyrroles to achieve panchromatic absorption with retention of viable excited-state properties.

13.
Phys Chem Chem Phys ; 23(23): 13011-13022, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34095927

RESUMO

Organometallic halide perovskite (MAPPbBr3), Rust-based Vapor Phase Polymerization (RVPP)-PEDOT hole transporting layers and (RVPP-PEDOT)/MAPPbBr3 dual-layer, deposited on fluorine doped tin oxide glass were studied at room temperature using steady-state absorption, time-resolved photoluminescence imaging and femtosecond time-resolved absorption spectroscopy. Application of these techniques in conjunction with diverse excitation intensities allowed determination of various optoelectronic properties of the perovskite film and the time constant of the hole extraction process. Spectral reconstruction of the bandedge absorption spectrum using Elliot's formula enabled separation of the exciton band. The binding energy of the exciton was determined to be 19 meV and the bandgap energy of the perovskite film was 2.37 eV. Subsequent time-resolved photoluminescence studies of the perovskite film performed using a very weak excitation intensity followed by a global analysis of the data revealed monomolecular recombination dynamics of charge carriers occurring with an amplitude weighted lifetime of 3.2 ns. Femtosecond time-resolved transient absorption of the film performed after excitation intensity spanning a range of over two orders of magnitude enabled determining the rate constant of bimolecular recombination and was found to be 2.6 × 10-10 cm3 s-1. Application of numerous high intensity excitations enabled observation of band filling effect and application of the Burstein-Moss model allowed to determine the reduced effective mass of photoexcited electron-hole pair in MAPPbBr3 film to be 0.19 rest mass of the electron. Finally, application of transient absorption on RVPP-PEDOT/MAPPbBr3 enabled determination of a 0.4 ps time constant for the MAPPbBr3-to-PEDOT hole extraction process.

14.
Phys Chem Chem Phys ; 23(10): 6182-6189, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33687384

RESUMO

Two benchmark sensitizers used for dye-sensitized solar cells, ruthenium polypyridyl N719 and Z907 dyes were investigated with spectroscopic methods as steady-state absorption, time-gated phosphorescence and femto-/nanosecond time-resolved transient absorption at room temperature and at 160 K. Aim of this study was to perform comprehensive photophysical study of dye excited singlet and triplet metal-to-ligand charge transfer (MLCT) states including states lifetimes, dependency on temperature and dye concentration and obtain detailed information on the excitation decay pathway. Transient absorption and phosphorescence decay data provided a clearer picture of the dynamics of the excited MLCT states. Based on data analysis, the excitation decay pathway consists of rapid intersystem crossing to the triplet MLCT state that undergoes state solvation and vibrational relaxation. It was demonstrated that the lifetime of the fully relaxed triplet MLCT is also strongly dependent on dye concentration for both molecules, providing a viable explanation for a large inconsistency seen in previous studies.

15.
mBio ; 12(1)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593975

RESUMO

Oxygenic photosynthetic organisms have evolved a multitude of mechanisms for protection against high-light stress. IsiA, a chlorophyll a-binding cyanobacterial protein, serves as an accessory antenna complex for photosystem I. Intriguingly, IsiA can also function as an independent pigment protein complex in the thylakoid membrane and facilitate the dissipation of excess energy, providing photoprotection. The molecular basis of the IsiA-mediated excitation quenching mechanism remains poorly understood. In this study, we demonstrate that IsiA uses a novel cysteine-mediated process to quench excitation energy. The single cysteine in IsiA in the cyanobacterium Synechocystis sp. strain PCC 6803 was converted to a valine. Ultrafast fluorescence spectroscopic analysis showed that this single change abolishes the excitation energy quenching ability of IsiA, thus providing direct evidence of the crucial role of this cysteine residue in energy dissipation from excited chlorophylls. Under stress conditions, the mutant cells exhibited enhanced light sensitivity, indicating that the cysteine-mediated quenching process is critically important for photoprotection.IMPORTANCE Cyanobacteria, oxygenic photosynthetic microbes, constantly experience varying light regimes. Light intensities higher than those that saturate the photosynthetic capacity of the organism often lead to redox damage to the photosynthetic apparatus and often cell death. To meet this challenge, cyanobacteria have developed a number of strategies to modulate light absorption and dissipation to ensure maximal photosynthetic productivity and minimal photodamage to cells under extreme light conditions. In this communication, we have determined the critical role of a novel cysteine-mediated mechanism for light energy dissipation in the chlorophyll protein IsiA.


Assuntos
Proteínas de Bactérias/genética , Clorofila A/metabolismo , Cianobactérias/metabolismo , Cisteína/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Luz , Proteínas de Bactérias/metabolismo , Cisteína/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Ligação Proteica , Espectrometria de Fluorescência , Valina/genética , Valina/metabolismo
16.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523887

RESUMO

The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo-electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.

17.
J Phys Chem A ; 124(38): 7776-7794, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32926787

RESUMO

Six zinc(II) porphyrins bearing 0-4 meso-phenyl substituents have been examined spectroscopically and theoretically. Comparisons with previously examined free base analogues afford a deep understanding of the electronic and photophysical effects of systematic addition of phenyl groups in porphyrins containing a central zinc(II) ion versus two hydrogen atoms. Trends in the wavelengths and relative intensities of the absorption bands are generally consistent with predictions from time-dependent density functional theory calculations and simulations from Gouterman's four-orbital model. These trends derive from a preferential effect of the meso-phenyl groups to raise the energy of the highest occupied molecular orbital. The calculations reveal additional insights, such as a progressive increase in oscillator strength in the violet-red (B-Q) absorption manifold with increasing number of phenyls. Progressive addition of 0-4 phenyl substituents to the zinc porphyrins in O2-free toluene engenders a reduction in the measured lifetime of the lowest singlet excited state (2.5-2.1 ns), an increase in the S1 → S0 fluorescence yield (0.022-0.030), a decrease in the yield of S1 → T1 intersystem crossing (0.93-0.88), and an increase in the yield of S1 → S0 internal conversion (0.048-0.090). The derived rate constants for S1 decay reveal significant differences in the photophysical properties of the zinc chelates versus free base forms. The unexpected finding of a larger rate constant for internal conversion for zinc chelates versus free bases is particularly exemplary. Collectively, the findings afford fundamental insights into the photophysical properties and electronic structure of meso-phenylporphyrins, which are widely used as benchmarks for tetrapyrrole-based architectures in solar energy and life sciences research.

18.
J Phys Chem A ; 124(22): 4333-4344, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32394715

RESUMO

Excited-state properties of two novel metal-free custom-made dyes D2d [(Z)-2-cyano-3-(4-((E)-2-(6-(4-methoxyphenyl)-9-octyl-9H-carbazol-3-yl)vinyl)phenyl)acrylic acid] and T-SB-C [(E)-2-cyano-3-(4-((E)-4-(diphenylamino)styryl)phenyl)acrylic acid] and two commercially available Ruthenium-based N719 and Z907 dyes were investigated with application of time-resolved absorption and emission. Singlet excited state lifetimes of D2d and T-SB-C were determined in acetonitrile and are 1.4 and 2.45 ns, respectively. The 3MLCT state lifetimes of N719 and Z907 dyes determined in methanol are 9.25 and 8.85 ns, respectively. Subsequently, photoexcited processes like electron injection and charge recombination were studied for those dyes adsorbed on the FTO/TiCl4/TiO2 photoanodes and fabricated via a conventional staining technique and innovative potential-assisted fast dye staining method. The dynamics of the spectro-temporal data was determined with application of single-wavelength and global fitting. All dye-TiO2 systems showed fast picosecond injection of excited electrons to the conduction band of the TiO2 layer and in complex multiphasic charge recombination processes. The dynamics of those processes is not altered by the dye adsorption method.

19.
Proc Natl Acad Sci U S A ; 117(12): 6502-6508, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32139606

RESUMO

Carotenoids play a number of important roles in photosynthesis, primarily providing light-harvesting and photoprotective energy dissipation functions within pigment-protein complexes. The carbon-carbon double bond (C=C) conjugation length of carotenoids (N), generally between 9 and 15, determines the carotenoid-to-(bacterio)chlorophyll [(B)Chl] energy transfer efficiency. Here we purified and spectroscopically characterized light-harvesting complex 2 (LH2) from Rhodobacter sphaeroides containing the N = 7 carotenoid zeta (ζ)-carotene, not previously incorporated within a natural antenna complex. Transient absorption and time-resolved fluorescence show that, relative to the lifetime of the S1 state of ζ-carotene in solvent, the lifetime decreases ∼250-fold when ζ-carotene is incorporated within LH2, due to transfer of excitation energy to the B800 and B850 BChls a These measurements show that energy transfer proceeds with an efficiency of ∼100%, primarily via the S1 → Qx route because the S1 → S0 fluorescence emission of ζ-carotene overlaps almost perfectly with the Qx absorption band of the BChls. However, transient absorption measurements performed on microsecond timescales reveal that, unlike the native N ≥ 9 carotenoids normally utilized in light-harvesting complexes, ζ-carotene does not quench excited triplet states of BChl a, likely due to elevation of the ζ-carotene triplet energy state above that of BChl a These findings provide insights into the coevolution of photosynthetic pigments and pigment-protein complexes. We propose that the N ≥ 9 carotenoids found in light-harvesting antenna complexes represent a vital compromise that retains an acceptable level of energy transfer from carotenoids to (B)Chls while allowing acquisition of a new, essential function, namely, photoprotective quenching of harmful (B)Chl triplets.


Assuntos
Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Bactérias/química , Carotenoides/química , Transferência de Energia , Cinética , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo
20.
Biochim Biophys Acta Bioenerg ; 1861(3): 148155, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935359

RESUMO

The Orange Carotenoid Protein (OCP) is responsible for photoprotection in many cyanobacteria. Absorption of blue light drives the conversion of the orange, inactive form (OCPO) to the red, active form (OCPR). Concomitantly, the N-terminal domain (NTD) and the C-terminal domain (CTD) of OCP separate, which ultimately leads to the formation of a quenched OCPR-PBS complex. The details of the photoactivation of OCP have been intensely researched. Binding site(s) of OCPR on the PBS core have also been proposed. However, the post-binding events of the OCPR-PBS complex remain unclear. Here, we demonstrate that PBS-bound OCPR is not sufficient as a PBS excitation energy quencher. Using site-directed mutagenesis, we generated a suite of single point mutations at OCP Leucine 51 (L51) of Synechocystis 6803. Steady-state and time-resolved fluorescence analyses demonstrated that all mutant proteins are unable to quench the PBS fluorescence, owing to either failed OCP binding to PBS, or, if bound, an OCP-PBS quenching state failed to form. The SDS-PAGE and Western blot analysis support that the L51A (Alanine) mutant binds to the PBS and therefore belongs to the second category. We hypothesize that upon binding to PBS, OCPR likely reorganizes and adopts a new conformational state (OCP3rd) different than either OCPO or OCPR to allow energy quenching, depending on the cross-talk between OCPR and its PBS core-binding counterpart.


Assuntos
Proteínas de Bactérias/metabolismo , Processos Fotoquímicos , Ficobilissomas/metabolismo , Modelos Moleculares , Mutação/genética , Processos Fotoquímicos/efeitos da radiação , Ficobilissomas/efeitos da radiação , Ligação Proteica/efeitos da radiação , Espectrometria de Fluorescência , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...