Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Neurol Sci ; 45(2): 417-430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37843690

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia. The early diagnosis of AD is an important factor for the control of AD progression. Electroencephalography (EEG) can be used for early diagnosis of AD. Acetylcholinesterase inhibitors (AChEIs) are also used for the amelioration of AD symptoms. In this systematic review, we reviewed the effect of different AChEIs including donepezil, rivastigmine, tacrine, physostigmine, and galantamine on EEG patterns in patients with AD. METHODS: PubMed electronic database was searched and 122 articles were found. After removal of unrelated articles, 24 articles were selected for the present study. RESULTS: AChEIs can decrease beta, theta, and delta frequency bands in patients with AD. However, conflicting results were found for alpha band. Some studies have shown increased alpha frequency, while others have shown decreased alpha frequency following treatment with AChEIs. The only difference was the type of drug. CONCLUSIONS: We found that studies reporting the decreased alpha frequency used donepezil and galantamine, while studies reporting the increased alpha frequency used rivastigmine and tacrine. It was suggested that future studies should focus on the effect of different AChEIs on EEG bands, especially alpha frequency in patients with AD, to compare their effects and find the reason for their different influence on EEG patterns. Also, differences between the effects of AChEIs on oligodendrocyte differentiation and myelination may be another important factor. This is the first article investigating the effect of different AChEIs on EEG patterns in patients with AD.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Donepezila/uso terapêutico , Rivastigmina/farmacologia , Rivastigmina/uso terapêutico , Galantamina/farmacologia , Galantamina/uso terapêutico , Acetilcolinesterase/uso terapêutico , Tacrina/uso terapêutico , Piperidinas/uso terapêutico , Indanos/uso terapêutico , Fenilcarbamatos/uso terapêutico
2.
Neural Regen Res ; 19(7): 1437-1445, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051885

RESUMO

ABSTRACT: Currently, there is a lack of effective medicines capable of halting or reversing the progression of neurodegenerative disorders, including amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, or Alzheimer's disease. Given the unmet medical need, it is necessary to reevaluate the existing paradigms of how to target these diseases. When considering neurodegenerative diseases from a systemic neurometabolic perspective, it becomes possible to explain the shared pathological features. This innovative approach presented in this paper draws upon extensive research conducted by the authors and researchers worldwide. In this review, we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases. We provide an overview of the risk factors associated with developing neurodegenerative disorders, including genetic, epigenetic, and environmental factors. Additionally, we examine pathological mechanisms implicated in these diseases such as oxidative stress, accumulation of misfolded proteins, inflammation, demyelination, death of neurons, insulin resistance, dysbiosis, and neurotransmitter disturbances. Finally, we outline a proposal for the restoration of mitochondrial metabolism, a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.

3.
Nat Commun ; 14(1): 6941, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907556

RESUMO

Circumstantial evidence suggests that B cells may instruct T cells to break tolerance. Here, to test this hypothesis, we used a murine model in which a single B cell clone precipitates an autoreactive response resembling systemic lupus erythematosus (SLE). The initiating clone did not need to enter germinal centers to precipitate epitope spreading. Rather, it localized to extrafollicular splenic bridging channels early in the response. Autoantibody produced by the initiating clone was not sufficient to drive the autoreactive response. Subsequent epitope spreading depended on antigen presentation and was compartmentalized by major histocompatibility complex (MHC). B cells carrying two MHC haplotypes could bridge the MHC barrier between B cells that did not share MHC. Thus, B cells directly relay autoreactivity between two separate compartments of MHC-restricted T cells, leading to inclusion of distinct B cell populations in germinal centers. Our findings demonstrate that B cells initiate and propagate the autoimmune response.


Assuntos
Apresentação de Antígeno , Lúpus Eritematoso Sistêmico , Camundongos , Animais , Epitopos , Antígenos de Histocompatibilidade Classe II/genética , Linfócitos B , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade
4.
Front Neuroanat ; 17: 1168523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206998

RESUMO

The common shrew, Sorex araneus, is a small mammal of growing interest in neuroscience research, as it exhibits dramatic and reversible seasonal changes in individual brain size and organization (a process known as Dehnel's phenomenon). Despite decades of studies on this system, the mechanisms behind the structural changes during Dehnel's phenomenon are not yet understood. To resolve these questions and foster research on this unique species, we present the first combined histological, magnetic resonance imaging (MRI), and transcriptomic atlas of the common shrew brain. Our integrated morphometric brain atlas provides easily obtainable and comparable anatomic structures, while transcriptomic mapping identified distinct expression profiles across most brain regions. These results suggest that high-resolution morphological and genetic research is pivotal for elucidating the mechanisms underlying Dehnel's phenomenon while providing a communal resource for continued research on a model of natural mammalian regeneration. Morphometric and NCBI Sequencing Read Archive are available at https://doi.org/10.17617/3.HVW8ZN.

5.
NPJ Parkinsons Dis ; 9(1): 6, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681683

RESUMO

Glucose metabolism is dysregulated in Parkinson's disease (PD) causing a shift toward the metabolism of lipids. Carnitine palmitoyl-transferase 1A (CPT1A) regulates the key step in the metabolism of long-chain fatty acids. The aim of this study is to evaluate the effect of downregulating CPT1, either genetically with a Cpt1a P479L mutation or medicinally on PD using chronic rotenone mouse models using C57Bl/6J and Park2 knockout mice. We show that Cpt1a P479L mutant mice are resistant to rotenone-induced PD, and that inhibition of CPT1 is capable of restoring neurological function, normal glucose metabolism, and alleviate markers of PD in the midbrain. Furthermore, we show that downregulation of lipid metabolism via CPT1 alleviates pathological motor and non-motor behavior, oxidative stress, and disrupted glucose homeostasis in Park2 knockout mice. Finally, we confirm that rotenone induces gut dysbiosis in C57Bl/6J and, for the first time, in Park2 knockout mice. We show that this dysbiosis is alleviated by the downregulation of the lipid metabolism via CPT1.

6.
Mol Neurobiol ; 59(11): 6971-6982, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36056982

RESUMO

The Sonic Hedgehog (SHH) signaling pathway is related to the progression of various tumors and nervous system diseases. Still, its specific role in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), remains studied. This research investigates the role of SHH and PI3K/AKT signaling pathway proteins on ALS development in a SOD1-G93A transgenic mouse model. After injection of SHH and PI3K/AKT signaling pathway inhibitors or agonists in hSOD1-G93A (9 weeks of age) transgenic mice, we studied skeletal muscle pathology using immunohistochemical staining and Western blot methods. In addition, recorded data on rotation time, weight, and survival were analyzed for these mice. Our study showed that the expression of SHH, Gli-1 and p-AKT in ALS mice decreased with the progression of the disease. The expression of p-AKT changed together with Gli-1 while injecting PI3K/AKT signaling pathway inhibitor or agonist; SHH and Gli-1 protein expression remained unchanged; p-AKT protein expression significantly decreased while injecting PI3K/AKT signaling pathway inhibitor. These results indicate that SHH has a regulatory effect on PI3K/AKT signaling pathway. In behavioral experiments, we found that the survival time of hSOD1-G93A mice was prolonged by injection of SHH agonist while shortened by injection of SHH inhibitor. In conclusion, we confirmed that the SHH pathway played a neuroprotective role in ALS by mediating PI3K/AKT signaling pathway.


Assuntos
Esclerose Lateral Amiotrófica , Fármacos Neuroprotetores , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
7.
J Neuroimmunol ; 358: 577657, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34315069

RESUMO

Astrocyte pathology is a feature of neuromyelitis optica spectrum disorder (NMOSD) pathology. Recently mitochondrial dysfunction and metabolic changes were suggested to play a role in NMOSD. To elucidate the role of mitochondrial dysfunction, astrocyte pathology was induced in C57BL/6 J female mice by intracerebral injection of aquaporin-4-immunoglobulin G from an NMOSD patient, together with complement. Etomoxir has been shown to cause mitochondrial dysfunction. Etomoxir was delivered to the central nervous system and resulted in decreased astrocyte pathology. The ameliorating effect was associated with increases in different acylcarnitines and amino acids. This suggests that mitochondria may be a therapeutic target in NMOSD.


Assuntos
Astrócitos/imunologia , Astrócitos/patologia , Autoanticorpos/imunologia , Compostos de Epóxi/administração & dosagem , Mitocôndrias/imunologia , Animais , Astrócitos/efeitos dos fármacos , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Neuromielite Óptica/imunologia
8.
Commun Biol ; 4(1): 509, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931719

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease characterized by death of motor neurons. The etiology and pathogenesis remains elusive despite decades of intensive research. Herein, we report that dysregulated metabolism plays a central role in the SOD1 G93A mouse model mimicking ALS. Specifically, we report that the activity of carnitine palmitoyl transferase 1 (CPT1) lipid metabolism is associated with disease progression. Downregulation of CPT1 activity by pharmacological and genetic methods results in amelioration of disease symptoms, inflammation, oxidative stress and mitochondrial function, whereas upregulation by high-fat diet or corticosterone results in a more aggressive disease progression. Finally, we show that downregulating CPT1 shifts the gut microbiota communities towards a protective phenotype in SOD1 G93A mice. These findings reveal that metabolism, and specifically CPT1 lipid metabolism plays a central role in the SOD1 G93A mouse model and shows that CPT1 might be a therapeutic target in ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Modelos Animais de Doenças , Compostos de Epóxi/farmacologia , Microbioma Gastrointestinal , Mutação , Superóxido Dismutase-1/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Progressão da Doença , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
J Pers Med ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809485

RESUMO

Depression is one of the most prevalent mental diseases worldwide. Patients with psychiatric diseases often have a history of childhood neglect, indicating that early-life experiences predispose to psychiatric diseases in adulthood. Two strong models were used in the present study: the maternal separation/early deprivation model (MS) and the chronic mild stress model (CMS). In both models, we found changes in the expression of a number of genes such as Creb and Npy. Strikingly, there was a clear regulation of expression of four genes involved in the AP-1 complex: c-Fos, c-Jun, FosB, and Jun-B. Interestingly, different expression levels were observed depending on the model, whereas the combination of the models resulted in a normal level of gene expression. The effects of MS and CMS on gene expression were associated with distinct histone methylation/acetylation patterns of all four genes. The epigenetic changes, like gene expression, were also dependent on the specific stressor or their combination. The obtained results suggest that single life events leave a mark on gene expression and the epigenetic signature of gene promoters, but a combination of different stressors at different life stages can further change gene expression through epigenetic factors, possibly causing the long-lasting adverse effects of stress.

10.
Sci Rep ; 10(1): 15583, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973137

RESUMO

The etiology of CNS diseases including multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis remains elusive despite decades of research resulting in treatments with only symptomatic effects. In this study, we provide evidence that a metabolic shift from glucose to lipid is a key mechanism in neurodegeneration. We show that, by downregulating the metabolism of lipids through the key molecule carnitine palmitoyl transferase 1 (CPT1), it is possible to reverse or slowdown disease progression in experimental models of autoimmune encephalomyelitis-, SOD1G93A and rotenone models, mimicking these CNS diseases in humans. The effect was seen both when applying a CPT1 blocker or by using a Cpt1a P479L mutant mouse strain. Furthermore, we show that diet, epigenetics, and microbiota are key elements in this metabolic shift. Finally, we present a systemic model for understanding the complex etiology of neurodegeneration and how different regulatory systems are interconnected through a central metabolic pathway that becomes deregulated under specific conditions.


Assuntos
Encéfalo/patologia , Carnitina O-Palmitoiltransferase/metabolismo , Encefalomielite Autoimune Experimental/patologia , Microbioma Gastrointestinal , Redes e Vias Metabólicas , Doença de Parkinson/patologia , Superóxido Dismutase-1/fisiologia , Animais , Encéfalo/metabolismo , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/genética , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Masculino , Camundongos , Mutação , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Rotenona/toxicidade
11.
PLoS One ; 15(6): e0234493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32520953

RESUMO

Multiple sclerosis (MS) is a neurodegenerative disease characterized by demyelination and inflammation. Dysregulated lipid metabolism and mitochondrial dysfunction are hypothesized to play a key role in MS. Carnitine Palmitoyl Transferase 1 (CPT1) is a rate-limiting enzyme for beta-oxidation of fatty acids in mitochondria. The therapeutic effect of pharmacological CPT1 inhibition with etomoxir was investigated in rodent models of myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalitis (EAE). Mice receiving etomoxir showed lower clinical score compared to placebo, however this was not significant. Rats receiving etomoxir revealed significantly lower clinical score and lower body weight compared to placebo group. When comparing etomoxir with interferon-ß (IFN-ß), IFN-ß had no significant therapeutic effects, whereas etomoxir treatment starting at day 1 and 5 significantly improved the clinical scores compared to the IFN-ß and the placebo group. Immunohistochemistry and image assessments of brain sections from rats with EAE showed higher myelination intensity and decreased expression of CPT1A in etomoxir-treated rats compared to placebo group. Moreover, etomoxir mediated increased interleukin-4 production and decreased interleukin-17α production in activated T cells. In conclusion, CPT1 is a key protein in the pathogenesis of EAE and MS and a crucial therapeutic target for the treatment.


Assuntos
Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Compostos de Epóxi/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Feminino , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Ratos , Ratos Endogâmicos Lew
12.
Sci Rep ; 9(1): 13299, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527712

RESUMO

Human mutations in carnitine palmitoyl transferase 1A (CPT1A) are correlated with a remarkably low prevalence of multiple sclerosis (MS) in Inuits (P479L) and Hutterites (G710E). To elucidate the role of CPT1A, we established a Cpt1a P479L mouse strain and evaluated its sensitivity to experimental autoimmune encephalomyelitis (EAE) induction. Since CPT1a is a key molecule in lipid metabolism, we compared the effects of a high-fat diet (HFD) and normal diet (ND) on disease progression. The disease severity increased significantly in WT mice compared to that in Cpt1 P479L mice. In addition, WT mice receiving HFD showed markedly exacerbated disease course when compared either with Cpt1a P479L mice receiving HFD or WT control group receiving ND. Induction of EAE caused a significant decrease of myelin basic protein expression in the hindbrain of disease affected WT mice in comparison to Cpt1a P479L mice. Further, WT mice showed increased expression of oxidative stress markers like Nox2 and Ho-1, whereas expression of mitochondrial antioxidants regulator Pgc1α was increased in Cpt1a P479L mice. Our results suggest that, lipids metabolism play an important role in EAE, as shown by the higher severity of disease progression in both WT EAE and WT EAF HFD-fed mice in contrast to their counterpart Cpt1a P479L mutant mice. Interestingly, mice with downregulated lipid metabolism due to the Cpt1a P479L mutation showed resistance to EAE induction. These findings support a key role for CPT1A in the development of EAE and could be a promising target in MS treatment.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Encefalomielite Autoimune Experimental/genética , Predisposição Genética para Doença/genética , Metabolismo dos Lipídeos/genética , Animais , Dieta Hiperlipídica , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/genética , Proteína Básica da Mielina/biossíntese , NADPH Oxidase 2/metabolismo , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Rombencéfalo/metabolismo
13.
J Biol Chem ; 294(18): 7377-7387, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30862673

RESUMO

The aquaglyceroporins are a subfamily of aquaporins that conduct both water and glycerol. Aquaporin-3 (AQP3) has an important physiological function in renal water reabsorption, and AQP3-mediated hydrogen peroxide (H2O2) permeability can enhance cytokine signaling in several cell types. The related aquaglyceroporin AQP7 is required for dendritic cell chemokine responses and antigen uptake. Selective small-molecule inhibitors are desirable tools for investigating the biological and pathological roles of these and other AQP isoforms. Here, using a calcein fluorescence quenching assay, we screened a library of 7360 drug-like small molecules for inhibition of mouse AQP3 water permeability. Hit confirmation and expansion with commercially available substances identified the ortho-chloride-containing compound DFP00173, which inhibited mouse and human AQP3 with an IC50 of ∼0.1-0.4 µm but had low efficacy toward mouse AQP7 and AQP9. Surprisingly, inhibitor specificity testing revealed that the methylurea-linked compound Z433927330, a partial AQP3 inhibitor (IC50, ∼0.7-0.9 µm), is a potent and efficacious inhibitor of mouse AQP7 water permeability (IC50, ∼0.2 µm). Stopped-flow light scattering measurements confirmed that DFP00173 and Z433927330 inhibit AQP3 glycerol permeability in human erythrocytes. Moreover, DFP00173, Z433927330, and the previously identified AQP9 inhibitor RF03176 blocked aquaglyceroporin H2O2 permeability. Molecular docking to AQP3, AQP7, and AQP9 homology models suggested interactions between these inhibitors and aquaglyceroporins at similar binding sites. DFP00173 and Z433927330 constitute selective and potent AQP3 and AQP7 inhibitors, respectively, and contribute to a set of isoform-specific aquaglyceroporin inhibitors that will facilitate the evaluation of these AQP isoforms as drug targets.


Assuntos
Aquaporina 3/antagonistas & inibidores , Aquaporinas/antagonistas & inibidores , Tiofenos/farmacologia , Animais , Células CHO , Permeabilidade da Membrana Celular , Cricetulus , Eritrócitos/metabolismo , Glicerol/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiofenos/química , Água/metabolismo
14.
Sci Rep ; 8(1): 7092, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728570

RESUMO

Multiple sclerosis (MS) is a neurodegenerative autoimmune disease, where chronic inflammation plays an essential role in its pathology. A feature of MS is the production of autoantibodies stimulated by an altered-peptide-ligand response and epitope spreading, resulting in loss of tolerance for self-proteins. The involvement of autoantibodies in MS pathogenesis has been suggested to initiate and drive progression of inflammation; however, the etiology of MS remains unknown. The effect of etomoxir and interferon-ß (IFN-ß) was examined in an experimental-autoimmune-encephalomyelitis (EAE) model of MS. Moreover, the impact of etomoxir and IFN-ß on recognition of brain proteins in serum from EAE rats was examined with the purpose of identifying the autoantibody reactivities involved in MS. Animals treated with etomoxir on day 1 exhibited a statistically significantly lower disease score than animals treated with IFN-ß (on day 1 or 5) or placebo. Etomoxir treatment on day 5 resulted in a significantly lower disease score than IFN-ß treatment on day 1. After disease induction antibodies was induced to a broad pallet of antigens in the brain. Surprisingly, by blocking CPT1 and therewith lipid metabolism several alterations in the antibody response was observed suggesting that autoantibodies play a role in the EAE animal model.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Encéfalo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Compostos de Epóxi/farmacologia , Interferon beta/farmacologia , Animais , Autoimunidade , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Feminino , Imunoprecipitação , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Ratos , Índice de Gravidade de Doença
15.
Sci Rep ; 7(1): 2158, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526869

RESUMO

Major depressive disorder is a complex and common mental disease, for which the pathology has not been elucidated. The purpose of this study is to provide knowledge about the importance of mitochondrial dysfunction, dysregulated lipid metabolism and inflammation. Mitochondrial carnitine palmitoyl transferase 1a (CPT1a) is a key molecule involved in lipid metabolism and mutations in CPT1a causing reduced function is hypothesized to have a protective role in the development of depression. Moreover, CPT1a is found to be upregulated in suicide patients with history of depression. Therefore, we hypothesized that inhibition of CPT1a activity can be developed as an innovative treatment strategy for depression. Stress exposure combined with different pharmacological treatment regimens; Etomoxir, CPT1 blocker, and Escitalopram, a favoured antidepressant drug, was applied in state-of-the-art chronic mild stress model. Etomoxir treatment induced statistical significant reduction of anhedonic behavior compared to vehicle treatment (p < 0.0001) and reversed depression-like phenotype in 90% of the rats (p = 0.0007), whereas Escitalopram only proved 57% efficacy. Moreover, Etomoxir revealed downregulation of interferon-γ, interleukin-17α and tumor necrosis factor-α. This indicate that alteration in metabolism is pivotal in the pathogenesis of depression, since CPT1 blockage is highly efficient in treating anhedonia and inflammation, thereby opening up for a novel class of antidepressant medication.


Assuntos
Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Depressão/etiologia , Depressão/metabolismo , Metabolismo dos Lipídeos , Estresse Psicológico/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Depressão/psicologia , Modelos Animais de Doenças , Expressão Gênica , Humanos , Sistema Imunitário/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Mutação , RNA Mensageiro , Ratos , Estresse Psicológico/genética
16.
Int J Mol Sci ; 17(12)2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27941618

RESUMO

Aquaporins (AQPs) are water channel proteins robustly expressed in the central nervous system (CNS). A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer's disease and Parkinson's disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury.


Assuntos
Aquaporinas/metabolismo , Medula Espinal/metabolismo , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Humanos
17.
Sci Transl Med ; 5(174): 174ra28, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447019

RESUMO

Vitiligo is an autoimmune disease characterized by destruction of melanocytes, leaving 0.5% of the population with progressive depigmentation. Current treatments offer limited efficacy. We report that modified inducible heat shock protein 70 (HSP70i) prevents T cell-mediated depigmentation. HSP70i is the molecular link between stress and the resultant immune response. We previously showed that HSP70i induces an inflammatory dendritic cell (DC) phenotype and is necessary for depigmentation in vitiligo mouse models. Here, we observed a similar DC inflammatory phenotype in vitiligo patients. In a mouse model of depigmentation, DNA vaccination with a melanocyte antigen and the carboxyl terminus of HSP70i was sufficient to drive autoimmunity. Mutational analysis of the HSP70i substrate-binding domain established the peptide QPGVLIQVYEG as invaluable for DC activation, and mutant HSP70i could not induce depigmentation. Moreover, mutant HSP70iQ435A bound human DCs and reduced their activation, as well as induced a shift from inflammatory to tolerogenic DCs in mice. HSP70iQ435A-encoding DNA applied months before spontaneous depigmentation prevented vitiligo in mice expressing a transgenic, melanocyte-reactive T cell receptor. Furthermore, use of HSP70iQ435A therapeutically in a different, rapidly depigmenting model after loss of differentiated melanocytes resulted in 76% recovery of pigmentation. Treatment also prevented relevant T cells from populating mouse skin. In addition, ex vivo treatment of human skin averted the disease-related shift from quiescent to effector T cell phenotype. Thus, HSP70iQ435A DNA delivery may offer potent treatment opportunities for vitiligo.


Assuntos
Autoimunidade/imunologia , Terapia Genética , Proteínas de Choque Térmico HSP70/uso terapêutico , Hipopigmentação/imunologia , Proteínas Mutantes/uso terapêutico , Vitiligo/imunologia , Vitiligo/terapia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Células Dendríticas/imunologia , Progressão da Doença , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Inflamação/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fenótipo , Pele/imunologia , Pele/patologia , Linfócitos T/imunologia , Transcrição Gênica , Transfecção , Vacinação , Vitiligo/patologia
18.
Mol Pharm ; 6(5): 1363-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19281192

RESUMO

The binding selectivity of charged liposomes to the spinal cord of rats affected by experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, was investigated. Positively and negatively charged liposomes were injected into the tail vein of rats, and blood/brain barrier (BBB) targeting was determined by confocal microscopy as a function of the temporal evolution of the inflammatory response. Accumulation in spinal cord endoneural vessels was observed for cationic, but not for anionic, liposomes, and only in EAE but not in healthy rats. The overall binding efficacy paralleled the severity of the clinical score, but targeting was observed already before clinical manifestation of inflammation. Preferential binding of positively charged liposomes in the course of acute EAE can be ascribed to subtle changes of BBB morphology and charge distribution in a similar way as for the binding of cationic particles to proliferating vasculature in chronic inflammation and angiogenesis. Our findings suggest that vascular changes related to increased binding affinity for cationic particles are very early events within the inflammatory reaction in acute EAE. Investigation of cationic vascular targeting can help to shed further light on these occurrences, and, potentially, new diagnostic and therapeutic options may become available. In neuroinflammatory diseases, cationic colloidal carrier particles may enable intervention at affected BBB by an approach which is independent from permeability increase.


Assuntos
Portadores de Fármacos/química , Encefalomielite Autoimune Experimental/tratamento farmacológico , Lipossomos/química , Animais , Barreira Hematoencefálica , Portadores de Fármacos/administração & dosagem , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Lipossomos/administração & dosagem , Microscopia Confocal , Neovascularização Patológica , Ratos , Ratos Endogâmicos Lew , Medula Espinal/irrigação sanguínea , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Eletricidade Estática
19.
J Cardiovasc Pharmacol ; 51(2): 170-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18287885

RESUMO

An increased plasma level of the major high-density lipoprotein (HDL) component, apolipoprotein A-I (apoA-I) is the aim of several therapeutic strategies for combating atherosclerotic disease. HDL therapy by direct intravenous administration of apoA-I is a plausible way; however, a fast renal filtration is a major obstacle for this approach. Using protein engineering technology, we have fused apoA-I to the trimerization domain of human tetranectin and thus constructed a high-mass recombinant trimeric apoA-I variant. The recombinant fusion protein was stable and expressed well; upon purification and intravenous injection into mice, it exhibited prolonged plasma retention time compared to wild type apoA-I. Trimeric apoA-I was biologically active in terms of promoting cholesterol efflux, stimulation of lecithin cholesterol acyltransferase-mediated cholesterol esterification, and reducing progression of atherosclerosis in cholesterol-fed low-density lipoprotein receptor-deficient mice. Direct administration of recombinant high-mass apoA-I analogues with retarded clearance is therefore a potential novel therapeutic approach for atherosclerotic plaque stabilization.


Assuntos
Apolipoproteína A-I/sangue , Aterosclerose/metabolismo , Animais , Apolipoproteína A-I/farmacologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Linhagem Celular , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Humanos , Rim/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polímeros , Receptores de LDL/genética , Proteínas Recombinantes de Fusão/farmacologia , Triglicerídeos/sangue
20.
Int J Cancer ; 121(12): 2794-800, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17721997

RESUMO

Persistent infection with human papillomaviruses (HPV) is a prerequisite for the development of cervical cancer. Vaccination with virus-like particles (VLP) has demonstrated efficacy in prophylaxis but lacks therapeutic potential. HPV16 L1E7 chimeric virus-like particles (CVLP) consist of a carboxy-terminally truncated HPV16L1 protein fused to the amino-terminal part of the HPV16 E7 protein and self-assemble by recombinant expression of the fusion protein. The CVLP are able to induce L1- and E7-specific cytotoxic T lymphocytes. We have performed a first clinical trial to gain information about the safety and to generate preliminary data on the therapeutic potential of the CVLP in humans. A randomized, double blind, placebo-controlled clinical trial has been conducted in 39 HPV16 mono-infected high grade cervical intraepithelial neoplasia (CIN) patients (CIN 2/3). Two doses (75 mug or 250 mug) of CVLP were applied. The duration of the study was 24 weeks with 2 optional visits after another 12 and 24 weeks. The vaccine showed a very good safety profile with only minor adverse events attributable to the immunization. Antibodies with high titers against HPV16 L1 and low titers against HPV16 E7 as well as cellular immune responses against both proteins were induced. Responses were equivalent for both vaccine concentrations. A trend for histological improvement to CIN 1 or normal was seen in 39% of the patients receiving the vaccine and only 25% of the placebo recipients. Fifty-six percent of the responders were also HPV16 DNA-negative by the end of the study. Therefore, we demonstrated evidence for safety and a nonsignificant trend for the clinical efficacy of the HPV16 L1E7 CVLP vaccine.


Assuntos
Vacinas Anticâncer/uso terapêutico , Papillomavirus Humano 16/imunologia , Proteínas de Fusão Oncogênica/uso terapêutico , Proteínas Oncogênicas Virais/uso terapêutico , Vacinas contra Papillomavirus/uso terapêutico , Displasia do Colo do Útero/tratamento farmacológico , Displasia do Colo do Útero/virologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/virologia , Adulto , Idoso , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , DNA Viral/efeitos dos fármacos , DNA Viral/isolamento & purificação , Método Duplo-Cego , Esquema de Medicação , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/isolamento & purificação , Humanos , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/administração & dosagem , Proteínas de Fusão Oncogênica/efeitos adversos , Proteínas Oncogênicas Virais/administração & dosagem , Proteínas Oncogênicas Virais/efeitos adversos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/tratamento farmacológico , Infecções Tumorais por Vírus/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/imunologia , Displasia do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...