Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Neurosci ; 13(1): 320-326, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36238190

RESUMO

Background: The CACNA1C protein is a L-type calcium channel, which influence affective disorders. Purpose: The purpose of the present study was to examine the possible association between the different genotypes of rs100677 CACNA1C gene and anxiety and other clinical symptoms in patients with unipolar depression. Patients and controls: A total of 754 patients and 708 controls from the Danish Psychiatric Biobank participated. Results: A significant correlation was found between anxiety and the A allele. It was further found that patients with the A allele more often were treated with electroconvulsive therapy and patients with the AA phenotype had the highest age. Limitations: The only information about controls was their sex and that they were recruited from the blood bank. Two types of inclusion criteria were used. The clinical data were not complete for all patients.

2.
NPJ Digit Med ; 5(1): 142, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104486

RESUMO

Prediction of survival for patients in intensive care units (ICUs) has been subject to intense research. However, no models exist that embrace the multiverse of data in ICUs. It is an open question whether deep learning methods using automated data integration with minimal pre-processing of mixed data domains such as free text, medical history and high-frequency data can provide discrete-time survival estimates for individual ICU patients. We trained a deep learning model on data from patients admitted to ten ICUs in the Capital Region of Denmark and the Region of Southern Denmark between 2011 and 2018. Inspired by natural language processing we mapped the electronic patient record data to an embedded representation and fed the data to a recurrent neural network with a multi-label output layer representing the chance of survival at different follow-up times. We evaluated the performance using the time-dependent concordance index. In addition, we quantified and visualized the drivers of survival predictions using the SHAP methodology. We included 37,355 admissions of 29,417 patients in our study. Our deep learning models outperformed traditional Cox proportional-hazard models with concordance index in the ranges 0.72-0.73, 0.71-0.72, 0.71, and 0.69-0.70, for models applied at baseline 0, 24, 48, and 72 h, respectively. Deep learning models based on a combination of entity embeddings and survival modelling is a feasible approach to obtain individualized survival estimates in data-rich settings such as the ICU. The interpretable nature of the models enables us to understand the impact of the different data domains.

3.
Nat Biotechnol ; 40(5): 692-702, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35102292

RESUMO

Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.


Assuntos
Bases de Conhecimento , Medicina de Precisão/métodos , Proteômica , Algoritmos , Tomada de Decisões Assistida por Computador , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Medicina de Precisão/normas , Proteômica/normas , Proteômica/estatística & dados numéricos
4.
Lancet Digit Health ; 2(4): e179-e191, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-33328078

RESUMO

BACKGROUND: Many mortality prediction models have been developed for patients in intensive care units (ICUs); most are based on data available at ICU admission. We investigated whether machine learning methods using analyses of time-series data improved mortality prognostication for patients in the ICU by providing real-time predictions of 90-day mortality. In addition, we examined to what extent such a dynamic model could be made interpretable by quantifying and visualising the features that drive the predictions at different timepoints. METHODS: Based on the Simplified Acute Physiology Score (SAPS) III variables, we trained a machine learning model on longitudinal data from patients admitted to four ICUs in the Capital Region, Denmark, between 2011 and 2016. We included all patients older than 16 years of age, with an ICU stay lasting more than 1 h, and who had a Danish civil registration number to enable 90-day follow-up. We leveraged static data and physiological time-series data from electronic health records and the Danish National Patient Registry. A recurrent neural network was trained with a temporal resolution of 1 h. The model was internally validated using the holdout method with 20% of the training dataset and externally validated using previously unseen data from a fifth hospital in Denmark. Its performance was assessed with the Matthews correlation coefficient (MCC) and area under the receiver operating characteristic curve (AUROC) as metrics, using bootstrapping with 1000 samples with replacement to construct 95% CIs. A Shapley additive explanations algorithm was applied to the prediction model to obtain explanations of the features that drive patient-specific predictions, and the contributions of each of the 44 features in the model were analysed and compared with the variables in the original SAPS III model. FINDINGS: From a dataset containing 15 615 ICU admissions of 12 616 patients, we included 14 190 admissions of 11 492 patients in our analysis. Overall, 90-day mortality was 33·1% (3802 patients). The deep learning model showed a predictive performance on the holdout testing dataset that improved over the timecourse of an ICU stay: MCC 0·29 (95% CI 0·25-0·33) and AUROC 0·73 (0·71-0·74) at admission, 0·43 (0·40-0·47) and 0·82 (0·80-0·84) after 24 h, 0·50 (0·46-0·53) and 0·85 (0·84-0·87) after 72 h, and 0·57 (0·54-0·60) and 0·88 (0·87-0·89) at the time of discharge. The model exhibited good calibration properties. These results were validated in an external validation cohort of 5827 patients with 6748 admissions: MCC 0·29 (95% CI 0·27-0·32) and AUROC 0·75 (0·73-0·76) at admission, 0·41 (0·39-0·44) and 0·80 (0·79-0·81) after 24 h, 0·46 (0·43-0·48) and 0·82 (0·81-0·83) after 72 h, and 0·47 (0·44-0·49) and 0·83 (0·82-0·84) at the time of discharge. INTERPRETATION: The prediction of 90-day mortality improved with 1-h sampling intervals during the ICU stay. The dynamic risk prediction can also be explained for an individual patient, visualising the features contributing to the prediction at any point in time. This explanation allows the clinician to determine whether there are elements in the current patient state and care that are potentially actionable, thus making the model suitable for further validation as a clinical tool. FUNDING: Novo Nordisk Foundation and the Innovation Fund Denmark.


Assuntos
Análise de Dados , Registros Eletrônicos de Saúde , Mortalidade Hospitalar , Hospitalização , Unidades de Terapia Intensiva , Aprendizado de Máquina , Modelos Biológicos , Idoso , Algoritmos , Área Sob a Curva , Estudos de Coortes , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Estudos Retrospectivos , Medição de Risco , Escore Fisiológico Agudo Simplificado
5.
Psychiatr Genet ; 29(6): 220-225, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31219960

RESUMO

The FKBP5 protein is of importance for the function of the glucocorticoid receptor. The purpose of the present study was to examine the possible association between the different genotypes of rs1360780 in the FKBP5 gene, and clinical symptoms in patients with unipolar depression. Seven hundred eighteen patients and 673 controls from the Danish Psychiatric Biobank were participated. No association was found between any genotype and diagnosis of unipolar depression. It was found that the group of depressed patients with the CC genotype showed significantly earlier start of treatment with medicine, had a significantly greater tendency to be treated with electroconvulsive therapy and showed a significantly higher frequency of family history of depression compared with the combined group of patients with the CT and TT genotypes. The only informations about controls were their sex and that they were recruited from the blood bank. The clinical data were not complete for all patients.


Assuntos
Depressão/genética , Proteínas de Ligação a Tacrolimo/genética , Adulto , Alelos , Estudos de Casos e Controles , Dinamarca , Depressão/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Receptores de Glucocorticoides/genética , Proteínas de Ligação a Tacrolimo/metabolismo
6.
Lancet Digit Health ; 1(2): e78-e89, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-33323232

RESUMO

BACKGROUND: Intensive-care units (ICUs) treat the most critically ill patients, which is complicated by the heterogeneity of the diseases that they encounter. Severity scores based mainly on acute physiology measures collected at ICU admission are used to predict mortality, but are non-specific, and predictions for individual patients can be inaccurate. We investigated whether inclusion of long-term disease history before ICU admission improves mortality predictions. METHODS: Registry data for long-term disease histories for more than 230 000 Danish ICU patients were used in a neural network to develop an ICU mortality prediction model. Long-term disease histories and acute physiology measures were aggregated to predict mortality risk for patients for whom both registry and ICU electronic patient record data were available. We compared mortality predictions with admission scores on the Simplified Acute Physiology Score (SAPS) II, the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) II, and the best available multimorbidity score, the Multimorbidity Index. An external validation set from an additional hospital was acquired after model construction to confirm the validity of our model. During initial model development data were split into a training set (85%) and an independent test set (15%), and a five-fold cross-validation was done during training to avoid overfitting. Neural networks were trained for datasets with disease history of 1 month, 3 months, 6 months, 1 year, 2·5 years, 5 years, 7·5 years, 10 years, and 23 years before ICU admission. FINDINGS: Mortality predictions with a model based solely on disease history outperformed the Multimorbidity Index (Matthews correlation coefficient 0·265 vs 0·065), and performed similarly to SAPS II and APACHE II (Matthews correlation coefficient with disease history, age, and sex 0·326 vs 0·347 and 0·300 for SAPS II and APACHE II, respectively). Diagnoses up to 10 years before ICU admission affected current mortality prediction. Aggregation of previous disease history and acute physiology measures in a neural network yielded the most precise predictions of in-hospital mortality (Matthews correlation coefficient 0·391 for in-hospital mortality compared with 0·347 with SAPS II and 0·300 with APACHE II). These results for the aggregated model were validated in an external independent dataset of 1528 patients (Matthews correlation coefficient for prediction of in-hospital mortality 0·341). INTERPRETATION: Longitudinal disease-spectrum-wide data available before ICU admission are useful for mortality prediction. Disease history can be used to differentiate mortality risk between patients with similar vital signs with more precision than SAPS II and APACHE II scores. Machine learning models can be deconvoluted to generate novel understandings of how ICU patient features from long-term and short-term events interact with each other. Explainable machine learning models are key in clinical settings, and our results emphasise how to progress towards the transformation of advanced models into actionable, transparent, and trustworthy clinical tools. FUNDING: Novo Nordisk Foundation and Innovation Fund Denmark.


Assuntos
Registros Eletrônicos de Saúde/estatística & dados numéricos , Mortalidade Hospitalar , Unidades de Terapia Intensiva , Sistema de Registros , Escore Fisiológico Agudo Simplificado , Análise de Sobrevida , APACHE , Idoso , Estado Terminal , Dinamarca , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...