Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(35): e2405898, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924602

RESUMO

Nanoscale Metal-Organic Frameworks (nanoMOFs) are widely implemented in a host of assays involving drug delivery, biosensing catalysis, and bioimaging. However, the cell pathways and cell fate remain poorly understood. Here, a new fluorescent nanoMOF integrating ATTO 655 into surface defects of colloidal UiO-66 is synthesized, allowing to track the spatiotemporal localization of Single nanoMOF in live cells. Density functional theory reveals the stronger binding of ATTO 655 to the Zr6 cluster nodes compared with phosphate and Alendronate Sodium. Parallelized tracking of the spatiotemporal localization of thousands of nanoMOFs and analysis using machine learning platforms reveals whether nanoMOFs remain outside as well as their cellular internalization pathways. To quantitatively assess their colocalization with endo/lysosomal compartments, a colocalization proxy approach relying on the nanoMOF detection of particles in one channel to the signal in the corresponding endo/lysosomal compartments channel, considering signal versus local background intensity ratio and signal-to-noise ratio is developed. This strategy mitigates colocalization value inflation from high or low signal expression in endo/lysosomal compartments. The results accurately measure the nanoMOFs' colocalization from early to late endosomes and lysosomes and emphasize the importance of understanding their intracellular dynamics based on single-particle tracking for optimal and safe drug delivery.


Assuntos
Portadores de Fármacos , Lisossomos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Humanos , Portadores de Fármacos/química , Lisossomos/metabolismo , Nanopartículas/química , Endossomos/metabolismo , Zircônio/química
2.
Res Sq ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352328

RESUMO

Sub-cellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with an unprecedented level of precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the sub-cellular environment, is labor-intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework to interpret the diffusional 2D or 3D temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying distinct types of endosomal organelles, and clathrin-coated pits and vesicles with up to 95% accuracy and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone illustrates that besides structure, motion encodes function at the molecular and subcellular level.

3.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014323

RESUMO

Sub-cellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with an unprecedented level of precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the sub-cellular environment, is labor-intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework to interpret the diffusional 2D or 3D temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying distinct types of endosomal organelles, and clathrin-coated pits and vesicles with up to 95% accuracy and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone indicates that besides structure, motion encodes function at the molecular and subcellular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA