Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 744509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691048

RESUMO

Type 1 diabetes is an immune-driven disease, where the insulin-producing beta cells from the pancreatic islets of Langerhans becomes target of immune-mediated destruction. Several studies have highlighted the implication of circulating and exosomal microRNAs (miRNAs) in type 1 diabetes, underlining its biomarker value and novel therapeutic potential. Recently, we discovered that exosome-enriched extracellular vesicles carry altered levels of both known and novel miRNAs in breast milk from lactating mothers with type 1 diabetes. In this study, we aimed to characterize exosomal miRNAs in the circulation of lactating mothers with and without type 1 diabetes, hypothesizing that differences in type 1 diabetes risk in offspring from these groups are reflected in the circulating miRNA profile. We performed small RNA sequencing on exosome-enriched extracellular vesicles extracted from plasma of 52 lactating mothers around 5 weeks postpartum (26 with type 1 diabetes and 26 age-matched controls), and found a total of 2,289 miRNAs in vesicles from type 1 diabetes and control libraries. Of these, 176 were differentially expressed in plasma from mothers with type 1 diabetes (167 upregulated; 9 downregulated, using a cut-off of abs(log2FC) >1 and FDR adjusted p-value <0.05). Extracellular vesicles were verified by nanoparticle tracking analysis, transmission electron microscopy and immunoblotting. Five candidate miRNAs were selected based on their involvement in diabetes and immune modulation/beta-cell functions: hsa-miR-127-3p, hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-24-3p and hsa-miR-30d-5p. Real-time qPCR validation confirmed that hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-24-3p, and hsa-miR-30d-5p were significantly upregulated in lactating mothers with type 1 diabetes as compared to lactating healthy mothers. To determine possible target genes and affected pathways of the 5 miRNA candidates, computational network-based analyses were carried out with TargetScan, mirTarBase, QIAGEN Ingenuity Pathway Analysis and PantherDB database. The candidates showed significant association with inflammatory response and cytokine and chemokine mediated signaling pathways. With this study, we detect aberrant levels of miRNAs within plasma extracellular vesicles from lactating mothers with type 1 diabetes during the postpartum period, including miRNAs with associations to disease pathogenesis and inflammatory responses.


Assuntos
Aleitamento Materno , MicroRNA Circulante/sangue , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Exossomos/genética , Adulto , Biomarcadores/sangue , Exossomos/metabolismo , Feminino , Humanos , Mães , Período Pós-Parto/sangue , Período Pós-Parto/genética , Gravidez
2.
Diabetes ; 70(2): 464-476, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33203694

RESUMO

The single nucleotide polymorphism rs7804356 located in the Src kinase-associated phosphoprotein 2 (SKAP2) gene is associated with type 1 diabetes (T1D), suggesting SKAP2 as a causal candidate gene. The objective of the study was to investigate if SKAP2 has a functional role in the ß-cells in relation to T1D. In a cohort of children with newly diagnosed T1D, rs7804356 predicted glycemic control and residual ß-cell function during the 1st year after diagnosis. In INS-1E cells and rat and human islets, proinflammatory cytokines reduced the content of SKAP2. Functional studies revealed that knockdown of SKAP2 aggravated cytokine-induced apoptosis in INS-1E cells and primary rat ß-cells, suggesting an antiapoptotic function of SKAP2. In support of this, overexpression of SKAP2 afforded protection against cytokine-induced apoptosis, which correlated with reduced nuclear content of S536-phosphorylated nuclear factor-κB (NF-κB) subunit p65, lower nitric oxide production, and diminished CHOP expression indicative of decreased endoplasmic reticulum stress. Knockdown of CHOP partially counteracted the increase in cytokine-induced apoptosis caused by SKAP2 knockdown. In conclusion, our results suggest that SKAP2 controls ß-cell sensitivity to cytokines possibly by affecting the NF-κB-inducible nitric oxide synthase-endoplasmic reticulum stress pathway.


Assuntos
Apoptose/genética , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Polimorfismo de Nucleotídeo Único , Adolescente , Animais , Glicemia/genética , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Feminino , Técnicas de Silenciamento de Genes , Genótipo , Controle Glicêmico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos
3.
Front Immunol ; 10: 2543, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708933

RESUMO

The breast milk plays a crucial role in shaping the initial intestinal microbiota and mucosal immunity of the infant. Interestingly, breastfeeding has proven to be protective against the early onset of immune-mediated diseases including type 1 diabetes. Studies have shown that exosomes from human breast milk are enriched in immune-modulating miRNAs suggesting that exosomal miRNAs (exomiRs) transferred to the infant could play a critical role in the development of the infant's immune system. We extracted exomiRs from breast milk of 52 lactating mothers (26 mothers with type 1 diabetes and 26 healthy mothers), to identify any differences in the exomiR content between the two groups. Small RNA-sequencing was performed to identify known and novel miRNAs in both groups. A total of 631 exomiRs were detected by small RNA sequencing including immune-related miRNAs such as hsa-let-7c, hsa-miR-21, hsa-miR-34a, hsa-miR-146b, and hsa-miR-200b. In addition, ~200 novel miRNAs were identified in both type 1 diabetes and control samples. Among the known miRNAs, nine exomiR's were found differentially expressed in mothers with type 1 diabetes compared to healthy mothers. The highly up-regulated miRNAs, hsa-miR-4497, and hsa-miR-3178, increased lipopolysaccharide-induced expression and secretion of tumor necrosis factor α (TNFα) in human monocytes. The up-regulated miRNA target genes were significantly enriched for longevity-regulating pathways and FoxO signaling. Our findings suggest a role of breast milk-derived exomiRs in modulating the infant's immune system.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Exossomos/química , Vesículas Extracelulares/química , MicroRNAs/análise , Leite Humano/química , Adulto , Aleitamento Materno , Células CACO-2 , Diabetes Mellitus Tipo 1/imunologia , Feminino , Humanos , Lactente , Recém-Nascido , Mucosa Intestinal/imunologia , Macrófagos/imunologia , MicroRNAs/fisiologia , Leite Humano/fisiologia , Análise de Sequência de RNA , Fator de Necrose Tumoral alfa/biossíntese
4.
Noncoding RNA ; 4(4)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469437

RESUMO

Circulating microRNAs (miRNAs) have been implicated in several pathologies including type 1 diabetes. In the present study, we aimed to identify circulating miRNAs affected by disease duration in children with recent onset type 1 diabetes. Forty children and adolescents from the Danish Remission Phase Cohort were followed with blood samples drawn at 1, 3, 6, 12, and 60 months after diagnosis. Pancreatic autoantibodies were measured at each visit. Cytokines were measured only the first year. miRNA expression profiling was performed by RT-qPCR. The effect of disease duration was analyzed by mixed models for repeated measurements adjusted for sex and age. Eight miRNAs (hsa-miR-10b-5p, hsa-miR-17-5p, hsa-miR-30e-5p, hsa-miR-93-5p, hsa-miR-99a-5p, hsa-miR-125b-5p, hsa-miR-423-3p, and hsa-miR-497-5p) were found to significantly change in expression (adjusted p-value < 0.05) with disease progression. Three pancreatic autoantibodies, ICA, IA-2A, and GAD65A, and four cytokines, IL-4, IL-10, IL-21, and IL-22, were associated with the miRNAs at different time points. Pathway analysis revealed associations with various immune-mediated signaling pathways. Eight miRNAs that were involved in immunological pathways changed expression levels during the first five years after diagnosis and were associated with variations in cytokine and pancreatic antibodies, suggesting a possible effect on the immunological processes in the early phase of the disease.

5.
Diabetologia ; 60(2): 354-363, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27866223

RESUMO

AIMS/HYPOTHESIS: We aimed to identify circulating microRNA (miRNA) that predicts clinical progression in a cohort of 123 children with new-onset type 1 diabetes mellitus. METHODS: Plasma samples were prospectively obtained at 1, 3, 6, 12 and 60 months after diagnosis from a subset of 40 children from the Danish Remission Phase Cohort, and profiled for miRNAs. At the same time points, meal-stimulated C-peptide and HbA1c levels were measured and insulin-dose adjusted HbA1c (IDAA1c) calculated. miRNAs that at 3 months after diagnosis predicted residual beta cell function and glycaemic control in this subgroup were further validated in the remaining cohort (n = 83). Statistical analysis of miRNA prediction for disease progression was performed by multiple linear regression analysis adjusted for age and sex. RESULTS: In the discovery analysis, six miRNAs (hsa-miR-24-3p, hsa-miR-146a-5p, hsa-miR-194-5p, hsa-miR-197-3p, hsa-miR-301a-3p and hsa-miR-375) at 3 months correlated with residual beta cell function 6-12 months after diagnosis. Stimulated C-peptide at 12 months was predicted by hsa-miR-197-3p at 3 months (p = 0.034). A doubling of this miRNA level corresponded to a sixfold higher stimulated C-peptide level. In addition, a doubling of hsa-miR-24-3p and hsa-miR-146a-5p levels at 3 months corresponded to a 4.2% (p < 0.014) and 3.5% (p < 0.022) lower IDAA1c value at 12 months. Analysis of the remaining cohort confirmed the initial finding for hsa-miR-197-3p (p = 0.018). The target genes for the six miRNAs revealed significant enrichment for pathways related to gonadotropin-releasing hormone receptor and angiogenesis pathways. CONCLUSIONS/INTERPRETATION: The miRNA hsa-miR-197-3p at 3 months was the strongest predictor of residual beta cell function 1 year after diagnosis in children with type 1 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Glicemia/metabolismo , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Prospectivos
6.
Pediatr Diabetes ; 17 Suppl 22: 37-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27411435

RESUMO

Type 1 diabetes (T1DM) is a complex disease, arising through the interaction of an incompletely defined combination of genetic susceptibility and environmental factors. It is well accepted that T1DM results from selective immune-mediated destruction of the insulin-producing ß cells in the islets of langerhans. Genetic studies of T1DM have identified several regions of susceptibility and identified major networks and pathways contributing to risk. In this study, we have taken advantages of the Immunochip fine-mapping genotyping data to address different aspects of immune regulation in relation to T1DM. First, we confirm that dense single nucleotide polymorphism (SNP) genotyping of the major histocompatibility complex/human leukocyte antigen (MHC/HLA) region capture the complex genetic contribution of this region to disease risk. Furthermore, it is shown that Immunochip genotyping can translate into a limited number of DRB1 and DQB1 amino acid residues that account for most of the HLA-risk. Second, we use the Immunochip data to look for functional significance by correlation to circulating levels of chemokines and demonstrate that genetic variation at chromosome 2, 3, and 6 correlates with circulating CCL2 and CCL4 in recent onset T1DM patients. Finally, we report that genetic variants predict autoantibody positivity in T1DM cases.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Complexo Principal de Histocompatibilidade , Autoanticorpos/genética , Diabetes Mellitus Tipo 1/genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos
7.
J Diabetes Res ; 2016: 9570424, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904692

RESUMO

Genome-wide association studies (GWAS) have identified over 40 type 1 diabetes risk loci. The clinical impact of these loci on ß-cell function during disease progression is unknown. We aimed at testing whether a genetic risk score could predict glycemic control and residual ß-cell function in type 1 diabetes (T1D). As gene expression may represent an intermediate phenotype between genetic variation and disease, we hypothesized that genes within T1D loci which are expressed in islets and transcriptionally regulated by proinflammatory cytokines would be the best predictors of disease progression. Two-thirds of 46 GWAS candidate genes examined were expressed in human islets, and 11 of these significantly changed expression levels following exposure to proinflammatory cytokines (IL-1ß + IFNγ + TNFα) for 48 h. Using the GWAS single nucleotide polymorphisms (SNPs) from each locus, we constructed a genetic risk score based on the cumulative number of risk alleles carried in children with newly diagnosed T1D. With each additional risk allele carried, HbA1c levels increased significantly within first year after diagnosis. Network and gene ontology (GO) analyses revealed that several of the 11 candidate genes have overlapping biological functions and interact in a common network. Our results may help predict disease progression in newly diagnosed children with T1D which can be exploited for optimizing treatment.


Assuntos
Citocinas/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Carga Genética , Ilhotas Pancreáticas/metabolismo , Adolescente , Adulto , Alelos , Criança , Estudos de Coortes , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Hemoglobinas Glicadas/genética , Humanos , Hiperglicemia , Células Secretoras de Insulina/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
8.
Mol Endocrinol ; 30(1): 48-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26652732

RESUMO

Activation of the transcription factor nuclear factor kappa B (NFkB) contributes to ß-cell death in type 1 diabetes (T1D). Genome-wide association studies have identified the gene TNF-induced protein 3 (TNFAIP3), encoding for the zinc finger protein A20, as a susceptibility locus for T1D. A20 restricts NF-κB signaling and has strong antiapoptotic activities in ß-cells. Although the role of A20 on NF-κB inhibition is well characterized, its other antiapoptotic functions are largely unknown. By studying INS-1E cells and rat dispersed islet cells knocked down or overexpressing A20 and islets isolated from the ß-cell-specific A20 knockout mice, we presently demonstrate that A20 has broader effects in ß-cells that are not restricted to inhibition of NF-κB. These involves, suppression of the proapoptotic mitogen-activated protein kinase c-Jun N-terminal kinase (JNK), activation of survival signaling via v-akt murine thymoma viral oncogene homolog (Akt) and consequently inhibition of the intrinsic apoptotic pathway. Finally, in a cohort of T1D children, we observed that the risk allele of the rs2327832 single nucleotide polymorphism of TNFAIP3 predicted lower C-peptide and higher hemoglobin A1c (HbA1c) levels 12 months after disease onset, indicating reduced residual ß-cell function and impaired glycemic control. In conclusion, our results indicate a critical role for A20 in the regulation of ß-cell survival and unveil novel mechanisms by which A20 controls ß-cell fate. Moreover, we identify the single nucleotide polymorphism rs2327832 of TNFAIP3 as a possible prognostic marker for diabetes outcome in children with T1D.


Assuntos
Apoptose/fisiologia , Cisteína Endopeptidases/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Criança , Cisteína Endopeptidases/genética , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Feminino , Humanos , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Polimorfismo de Nucleotídeo Único , Ratos , Transdução de Sinais/fisiologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
9.
Graefes Arch Clin Exp Ophthalmol ; 253(11): 1959-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26245339

RESUMO

BACKGROUND: The incidence of type 1 diabetes mellitus (T1DM) is increasing globally, and as a consequence, more patients are affected by microvascular complications such as diabetic retinopathy (DR). The aim of this study was to elucidate possible associations between diabetes-related single-nucleotide polymorphisms (SNP) and the development of DR. METHODS: Three hundred and thirty-nine patients with T1DM from the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987) went through an ophthalmic examination in 1995; 185 of these were reexamined in 2011. The development of DR was assessed by comparison of overall DR level between baseline and follow-up in the worst eye at baseline. Patients were graded on a modified version of the Early Treatment Diabetic Retinopathy Study (ETDRS) scale, and 20 SNPs were genotyped in 130 of the 185 patients. RESULTS: We found the CTSH/rs3825932 variant (C > T) was associated with reduced risk of progression to proliferative diabetic retinopathy (PDR) (OR [95 % CI] = 0.20 [0.07-0.56], p = 2.4 × 10(-3), padjust = 0.048) and ERBB3/rs2292239 variant (G > T) associated with increased risk of two-step progression (OR [95 % CI] = 2.76 [1.31-5.80], p = 7.5 × 10(-3), padjust = 0.15). The associations were independent of other known risk factors, such as HbA1c, sex, and diastolic blood pressure. CONCLUSION: In conclusion, CTSH/rs3825932 and ERBB3/rs2292239 SNPs were associated with reduced risk of progression to PDR and two-step progression of DR on the ETDRS scale accordingly. The variant CTSH remained statistically significant after adjusting for multiple testing. Our results suggest an overlap between genetic variants that confer risk of T1DM and progression of DR.


Assuntos
Catepsina H/genética , Retinopatia Diabética/genética , Polimorfismo de Nucleotídeo Único , Criança , Pré-Escolar , Dinamarca , Diabetes Mellitus Tipo 1/genética , Retinopatia Diabética/diagnóstico , Progressão da Doença , Feminino , Frequência do Gene , Técnicas de Genotipagem , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Reação em Cadeia da Polimerase
10.
Diabetologia ; 58(4): 828-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25541633

RESUMO

AIMS/HYPOTHESIS: The influence of glucagon on glycaemic control in type 1 diabetes is debated. We investigated the relationship between postprandial glucagon levels and HbA1c during a period up to 60 months after diagnosis of childhood type 1 diabetes. METHODS: The Danish remission phase cohort comprised 129 children (66 boys) with type 1 diabetes whose mean (SD) age at onset was 10.0 (3.9) years. Liquid mixed-meal tests were performed prospectively at 1, 3, 6 and 12 months and a subset of 40 patients completed follow-up at 60 months. Postprandial (90 min) plasma levels of glucagon, glucose (PG), C-peptide, total glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and HbA1c were analysed. Multivariate regression (repeated measurements with all five visits included) was applied and results expressed as relative change (95% CI). RESULTS: Postprandial glucagon levels increased 160% from 1 to 60 months after diagnosis (p < 0.0001). A doubling in postprandial PG corresponded to a 21% increase in postprandial glucagon levels (p = 0.0079), whereas a doubling in total GLP-1 levels corresponded to a 33% increase in glucagon levels (p < 0.0001). Postprandial glucagon associated negatively with postprandial C-peptide (p = 0.017). A doubling in postprandial glucagon corresponded to a 3% relative increase in HbA1c levels (p = 0.0045). CONCLUSIONS/INTERPRETATION: Postprandial glucagon levels were associated with deterioration of glycaemic control and declining beta cell function in the first 5 years after diagnosis of type 1 diabetes. The positive association of glucagon with total GLP-1 and PG suggests that physiological regulation of alpha cell secretion in type 1 diabetes is seriously disturbed.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 1/sangue , Glucagon/sangue , Hemoglobinas Glicadas/metabolismo , Hiperglicemia/sangue , Adolescente , Idade de Início , Biomarcadores/sangue , Criança , Dinamarca/epidemiologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Feminino , Seguimentos , Humanos , Hiperglicemia/diagnóstico , Células Secretoras de Insulina/metabolismo , Masculino , Análise Multivariada , Estudos Prospectivos , Fatores de Tempo
11.
Pediatr Diabetes ; 15(7): 469-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25287319

RESUMO

OBJECTIVE: To validate the partial remission (PR) definition based on insulin dose-adjusted HbA1c (IDAA1c). SUBJECTS AND METHODS: The IDAA1c was developed using data in 251 children from the European Hvidoere cohort. For validation, 129 children from a Danish cohort were followed from the onset of type 1 diabetes (T1D). Receiver operating characteristic curve (ROC) analysis was used to evaluate the predictive value of IDAA1c and age on partial C-peptide remission (stimulated C-peptide, SCP > 300 pmol/L). RESULTS: PR (IDAA1c ≤ 9) in the Danish and Hvidoere cohorts occurred in 62 vs. 61% (3 months, p = 0.80), 47 vs. 44% (6 months, p = 0.57), 26 vs. 32% (9 months, p = 0.32) and 19 vs. 18% (12 months, p = 0.69). The effect of age on SCP was significantly higher in the Danish cohort compared with the Hvidoere cohort (p < 0.0001), likely due to higher attained Boost SCP, so the sensitivity and specificity of those in PR by IDAA1c ≤ 9, SCP > 300 pmol/L was 0.85 and 0.62 at 6 months and 0.62 vs. 0.38 at 12 months, respectively. IDAA1c with age significantly improved the ROC analyses and the AUC reached 0.89 ± 0.04 (age) vs. 0.94 ± 0.02 (age + IDAA1c) at 6 months (p < 0.0004) and 0.76 ± 0.04 (age) vs. 0.90 ± 0.03 (age + IDAA1c) at 12 months (p < 0.0001). CONCLUSIONS: The diagnostic and prognostic power of the IDAA1c measure is kept but due to the higher Boost stimulation in the Danish cohort, the specificity of the formula is lower with the chosen limits for SCP (300 pmol/L) and IDAA1c ≤9, respectively.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico , Hiperglicemia/prevenção & controle , Hipoglicemiantes , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Insulina , Estado Pré-Diabético/diagnóstico , Adolescente , Fatores Etários , Peptídeo C/sangue , Criança , Pré-Escolar , Estudos de Coortes , Dinamarca , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diagnóstico Diferencial , Feminino , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/administração & dosagem , Lactente , Insulina/administração & dosagem , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Estado Pré-Diabético/sangue , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/metabolismo , Indução de Remissão , Sensibilidade e Especificidade
12.
Proc Natl Acad Sci U S A ; 111(28): 10305-10, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982147

RESUMO

Over 40 susceptibility loci have been identified for type 1 diabetes (T1D). Little is known about how these variants modify disease risk and progression. Here, we combined in vitro and in vivo experiments with clinical studies to determine how genetic variation of the candidate gene cathepsin H (CTSH) affects disease mechanisms and progression in T1D. The T allele of rs3825932 was associated with lower CTSH expression in human lymphoblastoid cell lines and pancreatic tissue. Proinflammatory cytokines decreased the expression of CTSH in human islets and primary rat ß-cells, and overexpression of CTSH protected insulin-secreting cells against cytokine-induced apoptosis. Mechanistic studies indicated that CTSH exerts its antiapoptotic effects through decreased JNK and p38 signaling and reduced expression of the proapoptotic factors Bim, DP5, and c-Myc. CTSH overexpression also up-regulated Ins2 expression and increased insulin secretion. Additionally, islets from Ctsh(-/-) mice contained less insulin than islets from WT mice. Importantly, the TT genotype was associated with higher daily insulin dose and faster disease progression in newly diagnosed T1D patients, indicating agreement between the experimental and clinical data. In line with these observations, healthy human subjects carrying the T allele have lower ß-cell function, which was evaluated by glucose tolerance testing. The data provide strong evidence that CTSH is an important regulator of ß-cell function during progression of T1D and reinforce the concept that candidate genes for T1D may affect disease progression by modulating survival and function of pancreatic ß-cells, the target cells of the autoimmune assault.


Assuntos
Catepsina H/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Adolescente , Alelos , Animais , Apoptose/genética , Catepsina H/genética , Linhagem Celular , Criança , Pré-Escolar , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Regulação da Expressão Gênica/genética , Genótipo , Humanos , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Knockout , Ratos
13.
Pediatr Diabetes ; 15(5): 345-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24731251

RESUMO

OBJECTIVE: To clarify whether the rate of decline in stimulated C-peptide (SCP) from 2 to 15 months after diagnosis has changed over an interval of 27 yr. RESEARCH DESIGN AND METHODS: The rate of decline in SCP levels at 1, 2, 3, 6, 9, 12, and 15 months after diagnosis was compared in four paediatric cohorts from Scandinavian and European countries including 446 children with new onset type 1 diabetes (T1D, 1982-2004). Findings were evaluated against 78 children (2004-2009) from the TrialNet studies. RESULTS: The mean rate of decline [%/month (±SEM)] in SCP for a 10-yr-old child was 7.7%/month (±1.5) in the 1982-1985 Cohort, 6.3%/month (±1.7) in the 1995-1998 Cohort, 7.8%/month (±0.7) in the 1999-2000 Cohort, and 10.7%/month (±0.9) in the latest 2004-2005 Cohort (p = 0.05). Including the TrialNet Cohort with a rate of decline in SCP of 10.0%/month (±0.9) the differences between the cohorts are still significant (p = 0.039). The rate of decline in SCP was negatively associated with age (p < 0.0001), insulin antibodies (IA) (p = 0.003), and glutamic acid decarboxylase-65 (GAD65A) (p = 0.03) initially with no statistically significant effect of body mass index (BMI) Z-score at 3 months. Also, at 3 months the time around partial remission, the effect of age on SCP was significantly greater in children ≤5 yr compared with older children (p ≤ 0.0001). CONCLUSIONS: During the past 27 yr, initial C-peptide as well as the rate of C-peptide decline seem to have increased. The rate of decline was affected significantly by age, GAD65A, and IA, but not BMI Z-score or initial C-peptide.


Assuntos
Peptídeo C/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Índice de Massa Corporal , Criança , Pré-Escolar , Estudos de Coortes , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/epidemiologia , Europa (Continente) , Feminino , Glutamato Descarboxilase/metabolismo , Humanos , Lactente , Anticorpos Anti-Insulina/metabolismo , Masculino , América do Norte , Países Escandinavos e Nórdicos , População Branca
14.
Exp Diabetes Res ; 2012: 896362, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829805

RESUMO

This study aims to identify key miRNAs in circulation, which predict ongoing beta-cell destruction and regeneration in children with newly diagnosed Type 1 Diabetes (T1D). We compared expression level of sera miRNAs from new onset T1D children and age-matched healthy controls and related the miRNAs expression levels to beta-cell function and glycaemic control. Global miRNA sequencing analyses were performed on sera pools from two T1D cohorts (n = 275 and 129, resp.) and one control group (n = 151). We identified twelve upregulated human miRNAs in T1D patients (miR-152, miR-30a-5p, miR-181a, miR-24, miR-148a, miR-210, miR-27a, miR-29a, miR-26a, miR-27b, miR-25, miR-200a); several of these miRNAs were linked to apoptosis and beta-cell networks. Furthermore, we identified miR-25 as negatively associated with residual beta-cell function (est.: -0.12, P = 0.0037), and positively associated with glycaemic control (HbA1c) (est.: 0.11, P = 0.0035) 3 months after onset [corrected]. In conclusion this study demonstrates that miR-25 might be a "tissue-specific" miRNA for glycaemic control 3 months after diagnosis in new onset T1D children and therefore supports the role of circulating miRNAs as predictive biomarkers for tissue physiopathology and potential intervention targets.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Células Secretoras de Insulina/citologia , MicroRNAs/metabolismo , Adolescente , Biomarcadores/metabolismo , Glicemia/metabolismo , Estudos de Casos e Controles , Criança , Estudos de Coortes , Dinamarca , Diabetes Mellitus Tipo 1/metabolismo , Progressão da Doença , Feminino , Humanos , Hiperglicemia/metabolismo , Masculino , Indução de Remissão , Análise de Sequência de DNA , Regulação para Cima
15.
Pediatr Diabetes ; 13(6): 454-62, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22686132

RESUMO

BACKGROUND: The zinc transporter 8 (ZnT8) was recently identified as a common autoantigen in type 1 diabetes (T1D) and inclusion of ZnT8 autoantibodies (ZnT8Ab) was found to increase the diagnostic specificity of T1D. OBJECTIVES: The main aims were to determine whether ZnT8Ab vary during follow-up 1 year after diagnosis, and to relate the reactivity of three types of ZnT8Ab to the residual stimulated C-peptide levels during the first year after diagnosis. SUBJECTS: A total of 129 newly diagnosed T1D patients <15 years was followed prospectively 1, 3, 6, and 12 months after diagnosis. METHODS: Hemoglobin A1c, meal-stimulated C-peptide, ZnT8Ab, and other pancreatic autoantibodies were measured at each visit. Patients were genotyped for the rs13266634 variant at the SLC30A8 gene and HLA-DQ alleles. RESULTS: The levels of all ZnT8Ab [ZnT8Arg (arginine), ZnT8Trp (tryptophan), ZnT8Gln (glutamine)] tended to decrease during disease progression. A twofold higher level of ZnT8Arg and ZnT8Gln was associated with 4.6%/5.2% (p = 0.02), 5.3%/8.2% (p = 0.02) and 8.9%/9.7% (p = 0.004) higher concentrations of stimulated C-peptide 3, 6, and 12 months after diagnosis. The TT genotype carriers of the SLC30A8 gene had 45.8% (p = 0.01) and 60.1% (p = 0.002) lower stimulated C-peptide 6 and 12 months after diagnosis compared to the CC and the CT genotype carriers in a recessive model. CONCLUSIONS: The levels of the Arg variant of the ZnT8 autoantibodies are associated with higher levels of stimulated C-peptide after diagnosis of T1D and during follow-up. Carriers of the TT genotype of the SLC30A8 gene predict lower stimulated C-peptide levels 12 months after diagnosis.


Assuntos
Autoanticorpos/sangue , Peptídeo C/sangue , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Adolescente , Fatores Etários , Substituição de Aminoácidos/imunologia , Substituição de Aminoácidos/fisiologia , Arginina/genética , Arginina/imunologia , Autoanticorpos/genética , Criança , Pré-Escolar , Dinamarca , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/imunologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Masculino , Proteínas Mutantes/imunologia , Regulação para Cima , Transportador 8 de Zinco
16.
Pediatr Diabetes ; 13(1): 51-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22118630

RESUMO

OBJECTIVE: Proinsulin is a marker of beta-cell distress and dysfunction in type 2 diabetes and transplanted islets. Proinsulin levels are elevated in patients newly diagnosed with type 1 diabetes. Our aim was to assess the relationship between proinsulin, insulin dose-adjusted haemoglobin A1c (IDAA1C), glucagon-like peptide-1 (GLP-1), glucagon, and remission status the first year after diagnosis of type 1 diabetes. METHODS: Juvenile patients (n = 275) were followed 1, 6, and 12 months after diagnosis. At each visit, partial remission was defined as IDAA1C ≤ 9%. The patients had a liquid meal test at the 1-, 6-, and 12-month visits, which included measurement of C-peptide, proinsulin, GLP-1, glucagon, and insulin antibodies (IA). RESULTS: Patients in remission at 6 and 12 months had significantly higher levels of proinsulin compared to non-remitting patients (p < 0.0001, p = 0.0002). An inverse association between proinsulin and IDAA1C was found at 1 and 6 months (p = 0.0008, p = 0.0022). Proinsulin was positively associated with C-peptide (p < 0.0001) and IA (p = 0.0024, p = 0.0068, p < 0.0001) at 1, 6, and 12 months. Glucagon (p < 0.0001 and p < 0.02) as well as GLP-1 (p = 0.0001 and p = 0.002) were significantly lower in remitters than in non-remitters at 6 and 12 months. Proinsulin associated positively with GLP-1 at 1 month (p = 0.004) and negatively at 6 (p = 0.002) and 12 months (p = 0.0002). CONCLUSIONS: In type 1 diabetes, patients in partial remission have higher levels of proinsulin together with lower levels of GLP-1 and glucagon compared to patients not in remission. In new onset type 1 diabetes proinsulin level may be a sign of better residual beta-cell function.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucagon/sangue , Proinsulina/sangue , Adolescente , Idade de Início , Glicemia/análise , Peptídeo C/análise , Peptídeo C/sangue , Criança , Pré-Escolar , Estudos de Coortes , Diabetes Mellitus Tipo 1/diagnóstico , Feminino , Seguimentos , Glucagon/análise , Peptídeo 1 Semelhante ao Glucagon/análise , Humanos , Lactente , Recém-Nascido , Masculino , Proinsulina/análise , Remissão Espontânea
17.
Autoimmunity ; 44(8): 616-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21604969

RESUMO

Autoantibodies against the newly established autoantigen in type 1 diabetes, zinc transporter 8, ZnT8, are presented as two types, ZnT8RAb and ZnT8WAb. The rs13266634 variant of the SLC30A8 gene has recently been found to determine the type of ZnT8Ab. The aim of this study was to explore the impact of this genetic variant and the ZnT8Ab on the residual beta-cell function during disease progression the first year after disease diagnosis in children with newly diagnosed type 1 diabetes. This cohort consists of 257 children aged < 16 years, all patients were newly diagnosed with type 1 diabetes. A Boost-test was carried out at 1, 6, and 12 months to characterize the residual beta-cell function. Carriers of the CC and CT genotype groups of the rs13266634 SNP of the SLC30A8 gene had higher stimulated C-peptide levels the first year after onset compared with those of the TT genotype group (29%, p = 0.034). CC genotype carriers were highly associated with the presence of ZnT8RAb subtype during disease progression (compared with TT, p < 0.0001). On the other hand, the TT genotype was associated with the presence of ZnT8WAb subtype during disease progression (compared with CC, p < 0.0001). The C allele of the SLC30A8 gene is associated with preserved beta-cell function in type 1 diabetes patients. The genetic determination of the rs13266634 variant on the ZnT8Ab specificity is sustained the first 12 months after the diagnosis of type 1 diabetes in a pediatric cohort.


Assuntos
Autoanticorpos/imunologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Progressão da Doença , Idade de Início , Alelos , Especificidade de Anticorpos , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/epidemiologia , Feminino , Predisposição Genética para Doença , Genótipo , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , Transportador 8 de Zinco
18.
BMC Med Genet ; 12: 41, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21429197

RESUMO

BACKGROUND: The protein tyrosine phosphatase nonreceptor type 2 (PTPN22) has been established as a type 1 diabetes susceptibility gene. A recent study found the C1858T variant of this gene to be associated with lower residual fasting C-peptide levels and poorer glycemic control in patients with type 1 diabetes. We investigated the association of the C1858T variant with residual beta-cell function (as assessed by stimulated C-peptide, proinsulin and insulin dose-adjusted HbA1c), glycemic control, daily insulin requirements, diabetic ketoacidosis (DKA) and diabetes-related autoantibodies (IA-2A, GADA, ICA, ZnT8Ab) in children during the first year after diagnosis of type 1 diabetes. METHODS: The C1858T variant was genotyped in an international cohort of children (n = 257 patients) with newly diagnosed type 1 diabetes during 12 months after onset. We investigated the association of this variant with liquid-meal stimulated beta-cell function (proinsulin and C-peptide) and antibody status 1, 6 and 12 months after onset. In addition HbA1c and daily insulin requirements were determined 1, 3, 6, 9 and 12 months after diagnosis. DKA was defined at disease onset. RESULTS: A repeated measurement model of all time points showed the stimulated proinsulin level is significantly higher (22%, p = 0.03) for the T allele carriers the first year after onset. We also found a significant positive association between proinsulin and IA levels (est.: 1.12, p = 0.002), which did not influence the association between PTPN22 and proinsulin (est.: 1.28, p = 0.03). CONCLUSIONS: The T allele of the C1858T variant is positively associated with proinsulin levels during the first 12 months in newly diagnosed type 1 diabetes children.


Assuntos
Diabetes Mellitus Tipo 1/genética , Cetoacidose Diabética/genética , Predisposição Genética para Doença/genética , Proinsulina/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Autoanticorpos/sangue , Peptídeo C/sangue , Criança , Estudos de Coortes , Diabetes Mellitus Tipo 1/complicações , Cetoacidose Diabética/etiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Análise de Regressão , Fatores de Tempo
19.
Pediatr Diabetes ; 9(4 Pt 1): 297-302, 2008 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-18466209

RESUMO

CONTEXT: Conflicting evidence exists as to whether the Pro12Ala single nucleotide polymorphism of the type 2 diabetes susceptibility gene peroxisome proliferator-activated receptor gamma (PPARG) also confers risk for type 1 diabetes (T1D). OBJECTIVE: The objective of this study was to investigate the PPARG gene in relation to residual beta-cell function and glycemic control in newly diagnosed T1D. DESIGN: Prospective, non-interventional, 12-month follow-up study, conducted in 18 centers in 15 countries. PATIENTS: Two hundred and fifty-seven children and adolescents (aged <16 yr) with newly diagnosed T1D. MAIN OUTCOME MEASURES: Beta-cell function was determined as 90-min meal-stimulated C-peptide (Boost test) 1, 6, and 12 months after diagnosis. Hemoglobin A1c (HbA1c) and daily insulin dose (IU/kg/d) were recorded at 1, 3, 6, 9, and 12 months after diagnosis. Haplotypes within PPARG were estimated by SNPHap program. Statistical analyses were performed in a repeated measurements model. RESULTS: Five haplotypes within PPARG were generated (h1, 68.4%; h2, 16.3%; h3, 8.3%; h4, 3.5%; and hx, 3.5%). Compared with the most frequent h1 haplotype, the haplotypes h3 and h4 of the PPARG associated with residual beta-cell function during the first year of clinical disease: h3 with a 27% lower C-peptide (p = 0.02) and h4 with a 39% lower C-peptide (p = 0.01). Haplotype h4 also associated with a 0.86% (absolute) higher HbA1c, after adjustment for the insulin dose (p = 0.02). CONCLUSION: Variation in the PPARG locus may influence disease progression during the first year after the presentation of T1D.


Assuntos
Diabetes Mellitus Tipo 1/genética , Progressão da Doença , Células Secretoras de Insulina/fisiologia , PPAR gama/metabolismo , Adolescente , Glicemia/metabolismo , Criança , Feminino , Seguimentos , Humanos , Masculino , PPAR gama/genética , Fatores de Tempo
20.
J Clin Endocrinol Metab ; 92(8): 2910-6, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17519307

RESUMO

CONTEXT: The role of glucagon in hyperglycemia in type 1 diabetes is unresolved, and in vitro studies suggest that increasing blood glucose might stimulate glucagon secretion. OBJECTIVE: Our objective was to investigate the relationship between postprandial glucose and glucagon level during the first 12 months after diagnosis of childhood type 1 diabetes. DESIGN: We conducted a prospective, noninterventional, 12-month follow-up study conducted in 22 centers in 18 countries. PATIENTS: Patients included 257 children and adolescents less than 16 yr old with newly diagnosed type 1 diabetes; 204 completed the 12-month follow-up. SETTING: The study was conducted at pediatric outpatient clinics. MAIN OUTCOME MEASURES: We assessed residual beta-cell function (C-peptide), glycosylated hemoglobin (HbA(1c)), blood glucose, glucagon, and glucagon-like peptide-1 (GLP-1) release in response to a 90-min meal stimulation (Boost) at 1, 6, and 12 months after diagnosis. RESULTS: Compound symmetric repeated-measurements models including all three visits showed that postprandial glucagon increased by 17% during follow-up (P = 0.001). Glucagon levels were highly associated with postprandial blood glucose levels because a 10 mmol/liter increase in blood glucose corresponded to a 20% increase in glucagon release (P = 0.0003). Glucagon levels were also associated with GLP-1 release because a 10% increase in GLP-1 corresponded to a 2% increase in glucagon release (P = 0.0003). Glucagon levels were not associated (coefficient -0.21, P = 0.07) with HbA(1c), adjusted for insulin dose. Immunohistochemical staining confirmed the presence of Kir6.2/SUR1 in human alpha-cells. CONCLUSION: Our study supports the recent in vitro data showing a stimulation of glucagon secretion by high glucose levels. Postprandial glucagon levels were not associated with HbA(1c), adjusted for insulin dose, during the first year after onset of childhood type 1 diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ingestão de Alimentos/fisiologia , Glucagon/metabolismo , Período Pós-Prandial/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adolescente , Peptídeo C/metabolismo , Criança , Estudos de Coortes , Feminino , Peptídeo 1 Semelhante ao Glucagon/sangue , Células Secretoras de Glucagon/fisiologia , Hemoglobinas Glicadas/metabolismo , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/fisiologia , Masculino , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/metabolismo , Receptores de Sulfonilureias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...