Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Small ; : e2401413, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733238

RESUMO

Advancing the field of photocatalysis requires the elucidation of structural properties that underpin the photocatalytic properties of promising materials. The focus of the present study is layered, Bi-rich bismuth oxyhalides, which are widely studied for photocatalytic applications yet poorly structurally understood, due to high levels of disorder, nano-sized domains, and the large number of structurally similar compounds. By connecting insights from multiple scattering techniques, utilizing electron-, X-ray- and neutron probes, the crystal phase of the synthesized materials is allocated as layered Bi24O31X10 (X = Cl, Br), albeit with significant deviation from the reported 3D crystalline model. The materials comprise anisotropic platelet-shaped crystalline domains, exhibiting significant in-plane ordering in two dimensions but disorder and an ultra-thin morphology in the layer stacking direction. Increased synthesis pH tailored larger, more ordered crystalline domains, leading to longer excited state lifetimes determined via femtosecond transient absorption spectroscopy (fs-TAS). Although this likely contributes to improved photocatalytic properties, assessed via the photooxidation of benzylamine, increasing the overall surface area facilitated the most significant improvement in photocatalytic performance. This study, therefore, enabled both phase allocation and a nuanced discussion of the structure-property relationship for complicated, ultra-thin photocatalysts.

2.
J Exp Bot ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606692

RESUMO

Filamentous pathogens that cause plant diseases such as powdery mildew, rust, anthracnose, and late blight continue to represent an enormous challenge for farmers worldwide. Interestingly, these pathogens, although phylogenetically distant, initiate pathogenesis in a very similar way by penetrating the cell wall and establishing a feeding structure inside the plant host-cell. To prevent pathogen ingress, the host-cell responds by forming defense structures known as papillae and encasements that are thought to mediate pre- and post-invasive immunity, respectively. This form of defense is evolutionarily conserved in land plants and is highly effective and durable against a broad selection of non-adapted filamentous pathogens. As most pathogens have evolved strategies to overcome the defenses of only a limited range of hostplants, the papilla/encasement response could hold the potential for becoming an optimal transfer of resistance from one plant species to another. With this review I will try to lay out the current knowledge on the involvement of membrane trafficking that forms these important defense structures and highlight some of the questions that still need to be solved.

3.
Sci Rep ; 14(1): 5809, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461322

RESUMO

This study aimed to develop a deep learning model to assess the quality of fetal echocardiography and to perform prospective clinical validation. The model was trained on data from the 18-22-week anomaly scan conducted in seven hospitals from 2008 to 2018. Prospective validation involved 100 patients from two hospitals. A total of 5363 images from 2551 pregnancies were used for training and validation. The model's segmentation accuracy depended on image quality measured by a quality score (QS). It achieved an overall average accuracy of 0.91 (SD 0.09) across the test set, with images having above-average QS scoring 0.97 (SD 0.03). During prospective validation of 192 images, clinicians rated 44.8% (SD 9.8) of images as equal in quality, 18.69% (SD 5.7) favoring auto-captured images and 36.51% (SD 9.0) preferring manually captured ones. Images with above average QS showed better agreement on segmentations (p < 0.001) and QS (p < 0.001) with fetal medicine experts. Auto-capture saved additional planes beyond protocol requirements, resulting in more comprehensive echocardiographies. Low QS had adverse effect on both model performance and clinician's agreement with model feedback. The findings highlight the importance of developing and evaluating AI models based on 'noisy' real-life data rather than pursuing the highest accuracy possible with retrospective academic-grade data.


Assuntos
Ecocardiografia , Feminino , Gravidez , Humanos , Estudos Retrospectivos
4.
Front Aging Neurosci ; 16: 1345417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469163

RESUMO

Introduction: Efforts to develop cost-effective approaches for detecting amyloid pathology in Alzheimer's disease (AD) have gained significant momentum with a focus on biomarker classification. Recent research has explored non-invasive and readily accessible biomarkers, including magnetic resonance imaging (MRI) biomarkers and some AD risk factors. Methods: In this comprehensive study, we leveraged a diverse dataset, encompassing participants with varying cognitive statuses from multiple sources, including cohorts from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and our in-house Dementia Disease Initiation (DDI) cohort. As brain amyloid plaques have been proposed as sufficient for AD diagnosis, our primary aim was to assess the effectiveness of multimodal biomarkers in identifying amyloid plaques, using deep machine learning methodologies. Results: Our findings underscore the robustness of the utilized methods in detecting amyloid beta positivity across multiple cohorts. Additionally, we investigated the potential of demographic data to enhance MRI-based amyloid detection. Notably, the inclusion of demographic risk factors significantly improved our models' ability to detect amyloid-beta positivity, particularly in early-stage cases, exemplified by an average area under the ROC curve of 0.836 in the unimpaired DDI cohort. Discussion: These promising, non-invasive, and cost-effective predictors of MRI biomarkers and demographic variables hold the potential for further refinement through considerations like APOE genotype and plasma markers.

5.
Cancer Imaging ; 23(1): 127, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124111

RESUMO

BACKGROUND: Artificial intelligence (AI) systems are proposed as a replacement of the first reader in double reading within mammography screening. We aimed to assess cancer detection accuracy of an AI system in a Danish screening population. METHODS: We retrieved a consecutive screening cohort from the Region of Southern Denmark including all participating women between Aug 4, 2014, and August 15, 2018. Screening mammograms were processed by a commercial AI system and detection accuracy was evaluated in two scenarios, Standalone AI and AI-integrated screening replacing first reader, with first reader and double reading with arbitration (combined reading) as comparators, respectively. Two AI-score cut-off points were applied by matching at mean first reader sensitivity (AIsens) and specificity (AIspec). Reference standard was histopathology-proven breast cancer or cancer-free follow-up within 24 months. Coprimary endpoints were sensitivity and specificity, and secondary endpoints were positive predictive value (PPV), negative predictive value (NPV), recall rate, and arbitration rate. Accuracy estimates were calculated using McNemar's test or exact binomial test. RESULTS: Out of 272,008 screening mammograms from 158,732 women, 257,671 (94.7%) with adequate image data were included in the final analyses. Sensitivity and specificity were 63.7% (95% CI 61.6%-65.8%) and 97.8% (97.7-97.8%) for first reader, and 73.9% (72.0-75.8%) and 97.9% (97.9-98.0%) for combined reading, respectively. Standalone AIsens showed a lower specificity (-1.3%) and PPV (-6.1%), and a higher recall rate (+ 1.3%) compared to first reader (p < 0.0001 for all), while Standalone AIspec had a lower sensitivity (-5.1%; p < 0.0001), PPV (-1.3%; p = 0.01) and NPV (-0.04%; p = 0.0002). Compared to combined reading, Integrated AIsens achieved higher sensitivity (+ 2.3%; p = 0.0004), but lower specificity (-0.6%) and PPV (-3.9%) as well as higher recall rate (+ 0.6%) and arbitration rate (+ 2.2%; p < 0.0001 for all). Integrated AIspec showed no significant difference in any outcome measures apart from a slightly higher arbitration rate (p < 0.0001). Subgroup analyses showed higher detection of interval cancers by Standalone AI and Integrated AI at both thresholds (p < 0.0001 for all) with a varying composition of detected cancers across multiple subgroups of tumour characteristics. CONCLUSIONS: Replacing first reader in double reading with an AI could be feasible but choosing an appropriate AI threshold is crucial to maintaining cancer detection accuracy and workload.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Estudos Retrospectivos , Programas de Rastreamento/métodos , Inteligência Artificial , Detecção Precoce de Câncer , Mamografia/métodos
6.
Eur Radiol ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938386

RESUMO

OBJECTIVES: To validate an AI system for standalone breast cancer detection on an entire screening population in comparison to first-reading breast radiologists. MATERIALS AND METHODS: All mammography screenings performed between August 4, 2014, and August 15, 2018, in the Region of Southern Denmark with follow-up within 24 months were eligible. Screenings were assessed as normal or abnormal by breast radiologists through double reading with arbitration. For an AI decision of normal or abnormal, two AI-score cut-off points were applied by matching at mean sensitivity (AIsens) and specificity (AIspec) of first readers. Accuracy measures were sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and recall rate (RR). RESULTS: The sample included 249,402 screenings (149,495 women) and 2033 breast cancers (72.6% screen-detected cancers, 27.4% interval cancers). AIsens had lower specificity (97.5% vs 97.7%; p < 0.0001) and PPV (17.5% vs 18.7%; p = 0.01) and a higher RR (3.0% vs 2.8%; p < 0.0001) than first readers. AIspec was comparable to first readers in terms of all accuracy measures. Both AIsens and AIspec detected significantly fewer screen-detected cancers (1166 (AIsens), 1156 (AIspec) vs 1252; p < 0.0001) but found more interval cancers compared to first readers (126 (AIsens), 117 (AIspec) vs 39; p < 0.0001) with varying types of cancers detected across multiple subgroups. CONCLUSION: Standalone AI can detect breast cancer at an accuracy level equivalent to the standard of first readers when the AI threshold point was matched at first reader specificity. However, AI and first readers detected a different composition of cancers. CLINICAL RELEVANCE STATEMENT: Replacing first readers with AI with an appropriate cut-off score could be feasible. AI-detected cancers not detected by radiologists suggest a potential increase in the number of cancers detected if AI is implemented to support double reading within screening, although the clinicopathological characteristics of detected cancers would not change significantly. KEY POINTS: • Standalone AI cancer detection was compared to first readers in a double-read mammography screening population. • Standalone AI matched at first reader specificity showed no statistically significant difference in overall accuracy but detected different cancers. • With an appropriate threshold, AI-integrated screening can increase the number of detected cancers with similar clinicopathological characteristics.

7.
J Med Imaging (Bellingham) ; 10(5): 054003, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780685

RESUMO

Purpose: Risk-stratified breast cancer screening might improve early detection and efficiency without comprising quality. However, modern mammography-based risk models do not ensure adaptation across vendor-domains and rely on cancer precursors, associated with short-term risk, which might limit long-term risk assessment. We report a cross-vendor mammographic texture model for long-term risk. Approach: The texture model was robustly trained using two systematically designed case-control datasets. Textural features, indicative of future breast cancer, were learned by excluding samples with diagnosed/potential malignancies from training. An augmentation-based domain adaption technique, based on flavorization of mammographic views, ensured generalization across vendor-domains. The model was validated in 66,607 consecutively screened Danish women with flavorized Siemens views and 25,706 Dutch women with Hologic-processed views. Performances were evaluated for interval cancers (IC) within 2 years from screening and long-term cancers (LTC) from 2 years after screening. The texture model was combined with established risk factors to flag 10% of women with the highest risk. Results: In Danish women, the texture model achieved an area under the receiver operating characteristic curve (AUC) of 0.71 and 0.65 for ICs and LTCs, respectively. In Dutch women with Hologic-processed views, the AUCs were not different from AUCs in Danish women with flavorized views. The AUC for texture combined with established risk factors increased to 0.68 for LTCs. The 10% of women flagged as high-risk accounted for 25.5% of ICs and 24.8% of LTCs. Conclusions: The texture model robustly estimated long-term breast cancer risk while adapting to an unseen processed vendor-domain and identified a clinically relevant high-risk subgroup.

8.
Eur J Radiol ; 168: 111126, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804650

RESUMO

PURPOSE: To estimate the ability of a commercially available artificial intelligence (AI) tool to detect acute brain ischemia on Magnetic Resonance Imaging (MRI), compared to an experienced neuroradiologist. METHODS: We retrospectively included 1030 patients with brain MRI, suspected of stroke from January 6th, 2020 to 1st of April 2022, based on these criteria: Age ≥ 18 years, symptoms within four weeks before the scan. The neuroradiologist reinterpreted the MRI scans and subclassified ischemic lesions for reference. We excluded scans with interpretation difficulties due to artifacts or missing sequences. Four MRI scanner models from the same vendor were used. The first 800 patients were included consecutively, remaining enriched for less frequent lesions. The index test was a CE-approved AI tool (Apollo version 2.1.1 by Cerebriu). RESULTS: The final analysis cohort comprised 995 patients (mean age 69 years, 53 % female). A case-based analysis for detecting acute ischemic lesions showed a sensitivity of 89 % (95 % CI: 85 %-91 %) and specificity of 90 % (95 % CI: 87 %-92 %). We found no significant difference in sensitivity or specificity based on sex, age, or comorbidities. Specificity was reduced in cases with DWI artifacts. Multivariate analysis showed that increasing ischemic lesion size and fragmented lesions were independently associated with higher sensitivity, while non-acute lesion ages lowered sensitivity. CONCLUSIONS: The AI tool exhibits high sensitivity and specificity in detecting acute ischemic lesions on MRI compared to an experienced neuroradiologist. While sensitivity depends on the ischemic lesions' characteristics, specificity depends on the image quality.


Assuntos
Isquemia Encefálica , Aprendizado Profundo , Acidente Vascular Cerebral , Humanos , Feminino , Idoso , Adolescente , Masculino , Estudos Retrospectivos , Inteligência Artificial , Acidente Vascular Cerebral/patologia , Imageamento por Ressonância Magnética/métodos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Encéfalo/patologia , Algoritmos , Testes Diagnósticos de Rotina , Imagem de Difusão por Ressonância Magnética/métodos
9.
Radiology ; 308(2): e230227, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37642571

RESUMO

Background Recent mammography-based risk models can estimate short-term or long-term breast cancer risk, but whether risk assessment may improve by combining these models has not been evaluated. Purpose To determine whether breast cancer risk assessment improves when combining a diagnostic artificial intelligence (AI) system for lesion detection and a mammographic texture model. Materials and Methods This retrospective study included Danish women consecutively screened for breast cancer at mammography from November 2012 to December 2015 who had at least 5 years of follow-up data. Examinations were evaluated for short-term risk using a commercially available diagnostic AI system for lesion detection, which produced a score to indicate the probability of cancer. A mammographic texture model, trained on a separate data set, assessed textures associated with long-term cancer risk. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate both the individual and combined performance of the AI and texture models for the prediction of future cancers in women with a negative screening mammogram, including those with interval cancers diagnosed within 2 years of screening and long-term cancers diagnosed 2 years or more after screening. AUCs were compared using the DeLong test. Results The Danish screening cohort included 119 650 women (median age, 59 years [IQR, 53-64 years]), of whom 320 developed interval cancers and 1401 developed long-term cancers. The combination model achieved a higher AUC for interval and long-term cancers grouped together than either the diagnostic AI (AUC, 0.73 vs 0.70; P < .001) or the texture risk (AUC, 0.73 vs 0.66; P < .001) models. The 10% of women with the highest combined risk identified by the combination model accounted for 44.1% (141 of 320) of interval cancers and 33.7% (472 of 1401) of long-term cancers. Conclusion Combining a diagnostic AI system and mammographic texture model resulted in improved risk assessment for interval cancers and long-term cancers and enabled identification of women at high risk. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Poynton and Slanetz in this issue.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/diagnóstico por imagem , Inteligência Artificial , Estudos Retrospectivos , Mamografia , Mama/diagnóstico por imagem
10.
Int J Cancer ; 152(6): 1150-1158, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36214783

RESUMO

Early studies reported a 4- to 6-fold risk of breast cancer between women with extremely dense and fatty breasts. As most early studies were case-control studies, we took advantage of a population-based screening program to study density and breast cancer incidence in a cohort design. In the Capital Region, Denmark, women aged 50 to 69 are invited to screening biennially. Women screened November 2012 to December 2017 were included, and classified by BI-RADS density code, version 4, at first screen after recruitment. Women were followed up for incident breast cancer, including ductal carcinoma in situ (DCIS), to 2020 in nationwide pathology data. Rate ratios (RRs) and 95% confidence intervals (CI) were compared across density groups using Poisson-regression. We included 189 609 women; 1 067 282 person-years; and 4110 incident breast cancers/DCIS. Thirty-three percent of women had BI-RADS density code 1; 38% code 2; 24% code 3; 4.7% code 4; and missing 0.3%. Using women with BI-RADS density code 1 as baseline; women with code 2 had RR 1.69 (95% CI 1.56-1.84); women with code 3, RR 2.06 (95% CI 1.89-2.25); and women with code 4, RR 2.37 (95% CI 1.05-2.74). Results differed between observations accumulated during screening and above screening age. Our results indicated less difference in breast cancer risk across level of breast density than normally stated. Translated into absolute risk of breast cancer after age 50, we found a 6.2% risk for the one-third of women with lowest density, and 14.7% for the 5% of women with highest density.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Densidade da Mama , Mamografia/métodos , Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Carcinoma Intraductal não Infiltrante/epidemiologia , Detecção Precoce de Câncer/métodos
11.
J Exp Bot ; 74(1): 118-129, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227010

RESUMO

Encasements formed around haustoria and biotrophic hyphae as well as hypersensitive reaction (HR) cell death are essential plant immune responses to filamentous pathogens. In this study we examine the components that may contribute to the absence of these responses in susceptible barley attacked by the powdery mildew fungus. We find that the effector CSEP0162 from this pathogen targets plant MONENSIN SENSITIVITY1 (MON1), which is important for the fusion of multivesicular bodies to their target membranes. Overexpression of CSEP0162 and silencing of barley MON1 both inhibit encasement formation. We find that the Arabidopsis ecotype No-0 has resistance to powdery mildew, and that this is partially dependent on MON1. Surprisingly, we find the MON1-dependent resistance in No-0 not only includes an encasement response, but also an effective HR. Similarly, silencing of MON1 in barley also blocks Mla3-mediated HR-based powdery mildew resistance. Our results indicate that MON1 is a vital plant immunity component, and we speculate that the barley powdery mildew fungus introduces the effector CSEP0162 to target MON1 and hence reduce encasement formation and HR.


Assuntos
Arabidopsis , Ascomicetos , Hordeum , Ascomicetos/fisiologia , Hordeum/genética , Hordeum/metabolismo , Monensin/metabolismo , Imunidade Vegetal , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-35666790

RESUMO

Learning temporal patterns from multivariate longitudinal data is challenging especially in cases when data is sporadic, as often seen in, e.g., healthcare applications where the data can suffer from irregularity and asynchronicity as the time between consecutive data points can vary across features and samples, hindering the application of existing deep learning models that are constructed for complete, evenly spaced data with fixed sequence lengths. In this article, a novel deep learning-based model is developed for modeling multiple temporal features in sporadic data using an integrated deep learning architecture based on a recurrent neural network (RNN) unit and a continuous-time autoregressive (CAR) model. The proposed model, called CARRNN, uses a generalized discrete-time autoregressive (AR) model that is trainable end-to-end using neural networks modulated by time lags to describe the changes caused by the irregularity and asynchronicity. It is applied to time-series regression and classification tasks for Alzheimer's disease progression modeling, intensive care unit (ICU) mortality rate prediction, human activity recognition, and event-based digit recognition, where the proposed model based on a gated recurrent unit (GRU) in all cases achieves significantly better predictive performance than the state-of-the-art methods using RNNs, GRUs, and long short-term memory (LSTM) networks.

13.
Plant Signal Behav ; 17(1): 2084278, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35695087

RESUMO

Plant innate immunity toward cell-wall penetrating filamentous pathogens relies on the conserved SYP12 clade of secretory syntaxins. In Arabidopsis, the two closely related SYP12 clade members, PEN1 and SYP122, play an overlapping role in this general immunity, which can be complemented by two SYP12 clade members from Marchantia (MpSYP12A and MpSYP12B). However, in addition to the conserved SYP12 clade function, PEN1 alone mediates pre-invasive immunity toward powdery mildew fungi, which likely reflects a specialization of its functionality. Here, we show that the PEN1-specific specialization in immunity correlates with a continuous BFA-sensitive recycling and the ability to accumulate strongly at the growing cell plate. This contrasts with the behavior of SYP122, MpSYP12A, and MpSYP12B, all being more stable at the plasma membrane. We suggest that the highly mobile SYP12 specialization observed for PEN1 is required for a fast pre-invasive immune response to resist attack from powdery mildew fungi.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiologia , Parede Celular/metabolismo , Doenças das Plantas/microbiologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
14.
Radiology ; 304(1): 41-49, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35438561

RESUMO

Background Developments in artificial intelligence (AI) systems to assist radiologists in reading mammograms could improve breast cancer screening efficiency. Purpose To investigate whether an AI system could detect normal, moderate-risk, and suspicious mammograms in a screening sample to safely reduce radiologist workload and evaluate across Breast Imaging Reporting and Data System (BI-RADS) densities. Materials and Methods This retrospective simulation study analyzed mammographic examination data consecutively collected from January 2014 to December 2015 in the Danish Capital Region breast cancer screening program. All mammograms were scored from 0 to 10, representing the risk of malignancy, using an AI tool. During simulation, normal mammograms (score < 5) would be excluded from radiologist reading and suspicious mammograms (score > recall threshold [RT]) would be recalled. Two radiologists read the remaining mammograms. The RT was fitted using another independent cohort (same institution) by matching to the radiologist sensitivity. This protocol was further applied to each BI-RADS density. Screening outcomes were measured using the sensitivity, specificity, workload, and false-positive rate. The AI-based screening was tested for noninferiority sensitivity compared with radiologist screening using the Farrington-Manning test. Specificities were compared using the McNemar test. Results The study sample comprised 114 421 screenings for breast cancer in 114 421 women, resulting in 791 screen-detected, 327 interval, and 1473 long-term cancers and 2107 false-positive screenings. The mean age of the women was 59 years ± 6 (SD). The AI-based screening sensitivity was 69.7% (779 of 1118; 95% CI: 66.9, 72.4) and was noninferior (P = .02) to the radiologist screening sensitivity of 70.8% (791 of 1118; 95% CI: 68.0, 73.5). The AI-based screening specificity was 98.6% (111 725 of 113 303; 95% CI: 98.5, 98.7), which was higher (P < .001) than the radiologist specificity of 98.1% (111 196 of 113 303; 95% CI: 98.1, 98.2). The radiologist workload was reduced by 62.6% (71 585 of 114 421), and 25.1% (529 of 2107) of false-positive screenings were avoided. Screening results were consistent across BI-RADS densities, although not significantly so for sensitivity. Conclusion Artificial intelligence (AI)-based screening could detect normal, moderate-risk, and suspicious mammograms in a breast cancer screening program, which may reduce the radiologist workload. AI-based screening performed consistently across breast densities. © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Neoplasias da Mama , Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Mamografia/métodos , Programas de Rastreamento , Pessoa de Meia-Idade , Radiologistas , Estudos Retrospectivos , Carga de Trabalho
15.
Carbohydr Polym ; 286: 119286, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337530

RESUMO

Fucoidans are polysaccharides from brown macroalgae, showing multiple bioactivities important for bone regeneration and bone health. However, the use of fucoidans in medical applications remains sparse due to the heterogeneity in their chemical properties and unclear structure-function relationships. Innovations in extraction techniques and post processing steps are needed to produce homogeneous fucoidan molecules with tailorable bioactivities. Here, we applied enzyme-assisted extraction coupled with enzymatic hydrolysis by Fhf1 fucoidanase to generate low (LMW) and medium molecular weight (MMW) fucoidans from Fucus evanescens. In contrast to the anti-angiogenic properties of the high molecular weight fucoidan, LMW and MMW no longer suppressed the production of pro-angiogenic molecules by bone stem cells, nor impaired the formation of prevascular structures in vitro. In contrast to LMW, a pro-inflammatory response of OEC was observed after treatment with high concentrations of MMW. Thus, fucoidanase hydrolysis could be a useful tool to tailor the bioactivity of fucoidans.


Assuntos
Fucus , Polissacarídeos , Regeneração Óssea , Fucus/química , Hidrolases , Polissacarídeos/química , Polissacarídeos/farmacologia
16.
Elife ; 112022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119361

RESUMO

Filamentous fungal and oomycete plant pathogens that invade by direct penetration through the leaf epidermal cell wall cause devastating plant diseases. Plant preinvasive immunity toward nonadapted filamentous pathogens is highly effective and durable. Pre- and postinvasive immunity correlates with the formation of evolutionarily conserved and cell-autonomous cell wall structures, named papillae and encasements, respectively. Yet, it is still unresolved how papillae/encasements are formed and whether these defense structures prevent pathogen ingress. Here, we show that in Arabidopsis the two closely related members of the SYP12 clade of syntaxins (PEN1 and SYP122) are indispensable for the formation of papillae and encasements. Moreover, loss-of-function mutants were hampered in preinvasive immunity toward a range of phylogenetically distant nonadapted filamentous pathogens, underlining the versatility and efficacy of this defense. Complementation studies using SYP12s from the early diverging land plant, Marchantia polymorpha, showed that the SYP12 clade immunity function has survived 470 million years of independent evolution. These results suggest that ancestral land plants evolved the SYP12 clade to provide a broad and durable preinvasive immunity to facilitate their life on land and pave the way to a better understanding of how adapted pathogens overcome this ubiquitous plant defense strategy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Colletotrichum , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Predisposição Genética para Doença , Marchantia , Phytophthora infestans , Doenças das Plantas/genética , Proteínas Qa-SNARE/genética
17.
ISME Commun ; 2(1): 98, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37938690

RESUMO

The many microbial communities around us form interactive and dynamic ecosystems called microbiomes. Though concealed from the naked eye, microbiomes govern and influence macroscopic systems including human health, plant resilience, and biogeochemical cycling. Such feats have attracted interest from the scientific community, which has recently turned to machine learning and deep learning methods to interrogate the microbiome and elucidate the relationships between its composition and function. Here, we provide an overview of how the latest microbiome studies harness the inductive prowess of artificial intelligence methods. We start by highlighting that microbiome data - being compositional, sparse, and high-dimensional - necessitates special treatment. We then introduce traditional and novel methods and discuss their strengths and applications. Finally, we discuss the outlook of machine and deep learning pipelines, focusing on bottlenecks and considerations to address them.

18.
J Biomed Mater Res A ; 110(4): 861-872, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34792851

RESUMO

The need for a substitute for allograft and autograft is rising as bone graft surgeries exceed available supplies. We investigated the efficacy of the low-molecular weight marine bioactive compound fucoidan (FUC) on bone regeneration and implant fixation in seven female sheep, as FUC has shown great promise as a bone substitute. Titanium implants were inserted bilaterally in the distal femurs to test three hydroxyapatite/fucoidan (HA/FUC) groups and compared to allograft. The HA was coated with either 500 or 1500 µg of FUC, obtained by microwave-assisted chemical extraction, or 500 µg of FUC obtained by an enzyme-assisted extraction method. The concentric 2-mm gap around the implant was filled with either one of the HA/FUCs or allograft from the donor sheep. After 12 weeks, implant-bone blocks were harvested and divided into three parts for mechanical push-out testing, immunohistochemistry, and micro-CT and histomorphometry. Pronounced bone formations were observed by micro-CT and histomorphometry in all groups, but higher bone volume fractions were seen in the allograft group compared to the three HA/FUC groups. The trabecular thickness, trabecular separation, and architectural anisotropy were all significantly higher in the allograft group compared to the three HA/FUC groups. In conclusion, adequate bone formation was observed in all groups, although the bone formation was significantly greater in the allograft group. Also, no significant differences existed in the shear mechanical properties between groups, suggesting that the combination of HA and FUC can achieve a similar fixation strength to allograft in this model.


Assuntos
Substitutos Ósseos , Animais , Regeneração Óssea , Substitutos Ósseos/química , Durapatita/química , Feminino , Osseointegração , Polissacarídeos , Próteses e Implantes , Ovinos , Titânio
19.
Sci Rep ; 11(1): 18959, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556789

RESUMO

The COVID-19 pandemic has put massive strains on hospitals, and tools to guide hospital planners in resource allocation during the ebbs and flows of the pandemic are urgently needed. We investigate whether machine learning (ML) can be used for predictions of intensive care requirements a fixed number of days into the future. Retrospective design where health Records from 42,526 SARS-CoV-2 positive patients in Denmark was extracted. Random Forest (RF) models were trained to predict risk of ICU admission and use of mechanical ventilation after n days (n = 1, 2, …, 15). An extended analysis was provided for n = 5 and n = 10. Models predicted n-day risk of ICU admission with an area under the receiver operator characteristic curve (ROC-AUC) between 0.981 and 0.995, and n-day risk of use of ventilation with an ROC-AUC between 0.982 and 0.997. The corresponding n-day forecasting models predicted the needed ICU capacity with a coefficient of determination (R2) between 0.334 and 0.989 and use of ventilation with an R2 between 0.446 and 0.973. The forecasting models performed worst, when forecasting many days into the future (for large n). For n = 5, ICU capacity was predicted with ROC-AUC 0.990 and R2 0.928, and use of ventilator was predicted with ROC-AUC 0.994 and R2 0.854. Random Forest-based modelling can be used for accurate n-day forecasting predictions of ICU resource requirements, when n is not too large.


Assuntos
COVID-19/epidemiologia , Previsões/métodos , Unidades de Terapia Intensiva/tendências , Área Sob a Curva , Biologia Computacional/métodos , Cuidados Críticos/estatística & dados numéricos , Cuidados Críticos/tendências , Dinamarca/epidemiologia , Hospitalização/tendências , Hospitais/tendências , Humanos , Aprendizado de Máquina , Pandemias , Curva ROC , Respiração Artificial/estatística & dados numéricos , Respiração Artificial/tendências , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco , SARS-CoV-2/patogenicidade , Ventiladores Mecânicos/tendências
20.
Annu Rev Plant Biol ; 72: 823-846, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34143648

RESUMO

The foliar microbiome can extend the host plant phenotype by expanding its genomic and metabolic capabilities. Despite increasing recognition of the importance of the foliar microbiome for plant fitness, stress physiology, and yield, the diversity, function, and contribution of foliar microbiomes to plant phenotypic traits remain largely elusive. The recent adoption of high-throughput technologies is helping to unravel the diversityand spatiotemporal dynamics of foliar microbiomes, but we have yet to resolve their functional importance for plant growth, development, and ecology. Here, we focus on the processes that govern the assembly of the foliar microbiome and the potential mechanisms involved in extended plant phenotypes. We highlight knowledge gaps and provide suggestions for new research directions that can propel the field forward. These efforts will be instrumental in maximizing the functional potential of the foliar microbiome for sustainable crop production.


Assuntos
Microbiota , Ecologia , Fenótipo , Desenvolvimento Vegetal , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...