Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 989484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311146

RESUMO

Despite a much later inception of somatic embryogenesis (SE) propagation protocols for gymnosperms than for angiosperm species, SE is becoming increasingly important due to its applications for commercial forestry. For many conifers, there are however still major bottlenecks in the SE plant production process limiting the use of SE for forestry operations, Christmas tree production and research projects. In the present case study, the effects on plant growth from different cultural factors applied during the SE developmental process were studied in two conifer species of high value for Christmas tree production. Seven clones of Abies nordmanniana and two clones of Abies bornmuelleriana were included in the study. Accumulated effects from cultural treatments were recorded from the start of germination of mature embryos of different quality scores through development into plants in the third growing period. Experimental factors of the cultural treatments included were: germination temperature, germination time, light conditions, survival ex vitro and traits for plant growth and vitality. The results reveal that most of the studied experimental factors influenced plant growth during the first three years however their relative importance was different. Plant survival rate at end of the nursery stage was strongly impacted by germination temperature (p<0.001), initial embryo score (p=0.007), clone (p<0.001) and to a lesser extend week of germination (p=0.017). This case-study highlights and quantifies the strong interrelation between the developmental steps of somatic embryogenesis and show the importance of considering all cultural steps when optimizing SE plant production protocols.

2.
Crit Rev Biotechnol ; : 1-15, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30431379

RESUMO

Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA