Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 98(2): 1296-309, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25434332

RESUMO

Three random regression models were developed for routine genetic evaluation of Danish, Finnish, and Swedish dairy cattle. Data included over 169 million test-day records with milk, protein, and fat yield observations from over 8.7 million dairy cows of all breeds. Variance component analyses showed significant differences in estimates between Holstein, Nordic Red Cattle, and Jersey, but only small to moderate differences within a breed across countries. The obtained variance component estimates were used to build, for each breed, their own set of covariance functions. The covariance functions describe the animal effects on milk, protein, and fat yields of the first 3 lactations as 9 different traits, assuming the same heritabilities and a genetic correlation of unity across countries. Only 15, 27, and 7 eigenfunctions with the largest eigenvalues were used to describe additive genetic animal effects and nonhereditary animal effects across lactations and within later lactations, respectively. These reduced-rank covariance functions explained 99.0 to 99.9% of the original variances but reduced the number of animal equations to be solved by 44%. Moderate rank reduction for nonhereditary animal effects and use of one-third-smaller measurement error correlations than obtained from variance component estimation made the models more robust against extreme observations. Estimation of the genetic levels of the countries' subpopulations within a breed was found sensitive to the way the breed effects were modeled, especially for the genetically heterogeneous Nordic Red Cattle. Means to ensure that only additive genetic effects entered the estimated breeding values were to describe the crossbreeding effects by fixed and random cofactors and the calving age effect by an age × breed proportion interaction, and to model phantom parent groups as random effects. To ensure that genetic variances were the same across the 3 countries in breeding value estimation, as suggested by the variance component estimates, the applied multiplicative heterogeneous variance adjustment method had to be tailored using country-specific reference measurement error variances. Results showed the feasibility of across-country genetic evaluation of cows and sires based on original test-day phenotypes. Nevertheless, applying a thorough model validation procedure is essential throughout the model building process to obtain reliable breeding values.


Assuntos
Bovinos/genética , Lactação/genética , Leite/química , Modelos Estatísticos , Algoritmos , Análise de Variância , Animais , Cruzamento , Gorduras/análise , Feminino , Heterogeneidade Genética , Variação Genética , Vigor Híbrido , Hibridização Genética , Proteínas do Leite/análise , Proteínas do Leite/genética , Fenótipo , Análise de Regressão , Pesquisa , Especificidade da Espécie
2.
Genet Sel Evol ; 44: 8, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22455934

RESUMO

BACKGROUND: A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population. METHODS: The data consisted of de-regressed proofs (DRP) for 5,214 genotyped and 9,374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40) was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect. RESULTS: Averaged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20) were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect). The adjusted single-step blending and original single-step blending methods (relative weight of 0.20) had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In addition, the GBLUP method with a polygenic effect led to less bias of genomic predictions than the simple GBLUP method, and both single-step blending methods yielded less bias of predictions than all GBLUP methods. CONCLUSIONS: The single-step blending method is an appealing approach for practical genomic prediction in dairy cattle. Genomic prediction from the single-step blending method can be improved by adjusting the scale of the genomic relationship matrix.


Assuntos
Bovinos/genética , Técnicas de Genotipagem/métodos , Animais , Cruzamento/métodos , Variação Genética , Genoma , Genótipo , Masculino , Herança Multifatorial , Linhagem , Valor Preditivo dos Testes , Análise de Regressão , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...