Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemphyschem ; 24(12): e202300031, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37002728

RESUMO

Defects fundamentally govern the properties of all real materials. Correlating molecular defects to macroscopic quantities remains a challenge, particularly in the liquid phase. Herein, we report the influence of hydrogen bonds (HB) acting as defects in mixtures of non-hydroxyl-functionalized ionic liquids (ILs) with an increasing concentration of hydroxyl-functionalized ILs. We observed two types of HB defects: The conventional HBs between cation and anion (c-a), and the elusive HBs between cations (c-c) despite the repulsive Coulomb forces. We use neutron diffraction with isotopic substitution in combination with molecular dynamics simulations for measuring the geometry, strength, and distribution of mobile OH defects in the IL mixtures. In principle, this procedure allows relating the number and stability of defects to macroscopic properties such as diffusion, viscosity, and conductivity, which are of utmost importance for the performance of electrolytes in batteries and other electrical devices.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Difração de Nêutrons , Ânions/química , Cátions/química
2.
Chemphyschem ; 22(18): 1850-1856, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34241946

RESUMO

The paradigm of supramolecular chemistry relies on the delicate balance of noncovalent forces. Here we present a systematic approach for controlling the structural versatility of halide salts by the nature of hydrogen bonding interactions. We synthesized halide salts with hydroxy-functionalized pyridinium cations [HOCn Py]+ (n=2, 3, 4) and chloride, bromide and iodide anions, which are typically used as precursor material for synthesizing ionic liquids by anion metathesis reaction. The X-ray structures of these omnium halides show two types of hydrogen bonding: 'intra-ionic' H-bonds, wherein the anion interacts with the hydroxy group and the positively charged ring at the same cation, and 'inter-ionic' H-bonds, wherein the anion also interacts with the hydroxy group and the ring system but of different cations. We show that hydrogen bonding is controllable by the length of the hydroxyalkyl chain and the interaction strength of the anion. Some molten halide salts exhibit a third type of hydrogen bonding. IR spectra reveal elusive H-bonds between the OH groups of cations, showing interaction between ions of like charge. They are formed despite the repulsive interaction between the like-charged ions and compete with the favored cation-anion H-bonds. All types of H-bonding are analyzed by quantum chemical methods and the natural bond orbital approach, emphasizing the importance of charge transfer in these interactions. For simple omnium salts, we evidenced three distinct types of hydrogen bonds: Three in one!

3.
J Phys Chem Lett ; 11(15): 6000-6006, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640795

RESUMO

We measured the deuteron quadrupole coupling constants (DQCCs) for hydroxy-functionalized ionic liquids (ILs) with varying alkyl chain length over the temperature range between 60 and 200 K by means of solid-state NMR spectroscopy. For all temperatures, the 2H spectra show two DQCCs representing different types of hydrogen bonds. Higher values, ranging from 220 to 250 kHz, indicate weaker hydrogen bonds between cation and anion (c-a), and lower values varying from 165 to 210 kHz result from stronger hydrogen bonds between the OD groups of cations (c-c), in agreement with recent observations in infrared, neutron diffraction, and NMR studies. We observed different temperature dependencies for (c-a) and (c-c) hydrogen bonding. From the static pattern of the 2H spectra at the lowest temperatures, we derived the true DQCCs being up to 20 kHz larger than recently reported values measured at the glass transition temperature. We were able to freeze the librational motions of the hydrogen bonds in the ILs. The temperature dependence of the (c-a) and (c-c) cluster populations in the glassy state is opposite to that observed in the liquid state, partly anticipating the behavior of ILs tending to crystallize.

4.
J Phys Chem Lett ; 11(10): 3905-3910, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32338913

RESUMO

Atomic force microscopy has been used to measure the lubricity of a series of ionic liquids (ILs) at mica surfaces in the boundary friction regime. A previously unreported cation bilayer structure is detected at the IL-mica interface due to the formation of H-bonds between the hydroxy-functionalized cations [(c-c) H-bonds], which enhances the ordering of the ions in the boundary layer and improves the lubrication. The strength of the cation bilayer structure is controlled by altering the strength of (c-c) H-bonding via changes in the hydroxyalkyl chain length, the cation charge polarizability, and the coordination strength of the anions. This reveals a new means of controlling IL boundary nanostructure via H-bonding between ions of the same charge, which can impact diverse applications, including surface catalysis, particle stability, electrochemistry, etc.

5.
Phys Chem Chem Phys ; 22(13): 6861-6867, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202267

RESUMO

In hydroxy-functionalized ionic liquids, two types of hydrogen bonding coexist: the conventional H-bonds between cation and anion (c-a) and those between cation and cation (c-c), although the interaction between like-charged ions is supposed to be much weaker due to the repulsive Coulomb forces. Counting the cations involved in either (c-a) or (c-c) clusters is a challenge. For that purpose, we recently performed neutron diffraction (ND) measurements and molecular dynamics (MD) simulations at and above room temperature accompanied by NMR solid-state experiments in the glassy state of the ILs. In principle, these methods are suitable for determining the populations of (c-a) and (c-c) cluster species. For different reasons we could only address single temperatures and/or small temperature intervals above 300 K. The by far largest temperature range with reasonable efforts is accessible by simple infrared (IR) spectroscopy. However, counting (c-a) or (c-c) hydrogen bonds is a difficult task due to the different transition dipole moments resulting in varying intensities and broad vibrational bands. Here we present a method for deriving the number of cations involved in (c-a) ion pairs from IR spectra in the OH stretch region. This procedure provides access to the equilibria of (c-a) and (c-c) hydrogen bonds as a function of temperature allowing derivation of the transition enthalpy.

6.
Phys Chem Chem Phys ; 22(5): 2763-2774, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31951236

RESUMO

We provide comprehensive understanding of "like-likes-like" charge attraction in hydroxy-functionalized ionic liquids (ILs) by means of infrared spectroscopy (IR), quantum chemistry and differential scanning calorimetry (DSC). We show that hydrogen bonding between cation and cation (c-c) is possible despite the repulsive forces between ions of like charge. Already at room temperature, the (c-c) hydrogen bonds can compete with the regular Coulomb-enhanced hydrogen bonds between cation and anion (c-a). For a large set of well-selected ILs, we show that "like-charge attraction" between the OH-functionalized cations is controllable by the polarizability of the cation, the interaction strength of the anion and the length of the hydroxyalkyl chain. In particular, we clarify whether tethering the OH group away from the positive charge center of the cationic ring with longer hydroxyalkyl chains compensates for unfavourable cation/anion combinations with respect to (c-c) cluster formation. For that purpose, we synthesized and characterized twelve ionic liquids including the differently polarizable cations, 1-(n-hydroxyalkyl)-1-methylpiperidinium [HOCnMPip]+ and 1-(n-hydroxyalkyl)-pyridinium [HOCnPy]+, as well as the weakly and strongly interacting anions, bis(trifluoromethanesulfonyl)imide [NTf2]- and methanesulfonate [OMs]-, respectively. On top, we varied the hydroxyalkyl chain length (HOCn) (n = 2-5). We systematically show how these three molecular ion parameters affect like-charge attraction. The use of polarizable cations, weakly interacting anions, and long alkyl chain tethers results in (c-c) clustering already at room temperature. Kinetic trapping is not a prerequisite for the existence of (c-c) cluster species in ILs. Moreover, we demonstrate that micro structuring affects macroscopic behavior of this type of ILs. We observed that substantial (c-c) interaction prevents ILs from crystallizing. Instead, these ILs supercool and finally form a glass.

7.
J Phys Chem Lett ; 11(3): 683-688, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31899639

RESUMO

Hydroxy functionalization of cations in ionic liquids (ILs) can lead to formation of contacts between their OH groups [so-called (c-c) interactions]. One class of these linkages involves cooperatively enhanced hydrogen bonds to anionic partners that are sufficiently strong to overcome the repulsion between two positively charged centers. Herein, we clarify how the propensity for the formation of (c-c) contacts depends on the alkyl chain length between two cationic rings and their OH groups by analyzing the temperature-dependent IR spectra of bulk ILs as well as the vibrational predissociation spectra of ∼35 K complexes comprised of two cations and one anion. This study compares the behavior of two cationic derivatives with ethyl and propyl chains complexed with two different anions: bis(trifluoromethylsulfonyl)imide and tetrafluoroborate. Only the bulk ILs with the longer chain propyl derivative [HPMPip+ = 1-(3-hydroxypropyl)-1-methylpiperidinium] display (c-c) interactions. Molecular-level aspects of this docking arrangement are revealed by analyzing the OH stretching fundamentals displayed by the ternary complexes.

8.
J Phys Chem Lett ; 10(23): 7368-7373, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31713427

RESUMO

Ionic liquids (ILs) have attracted increasing interest in science and technology because of their remarkable properties, which can be tuned via varying ion structures to control the relative strengths of Coulomb interactions, hydrogen bonding (H-bonding), and dispersion forces. Here we use atomic force microscopy to probe the interfacial nanostructures of hydroxy functionalized ILs at negatively charged mica surfaces. H-bonding between hydroxy functionalized cations (c-c) produces cation clusters and a stronger interfacial nanostructure. H-bond stabilized cation clusters form despite opposing electrostatic repulsions between charge groups, cation-anion (c-a) electrostatic attractions, and (c-a) H-bonds. Comparison of ILs with and without OH functionalized cations shows directional H-bonding enhances interfacial structure more strongly than the dispersion forces between alkyl groups. These findings reveal a new means of controlling IL interfacial nanostructure via H-bonding between like-charged ions, which impact diverse areas including electrochemical charge storage (batteries and catalysis), electrodeposition, lubrication, etc.

9.
Angew Chem Int Ed Engl ; 58(49): 17863-17871, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31588622

RESUMO

We present deuteron quadrupole coupling constants (DQCC) for hydroxyl-functionalized ionic liquids (ILs) in the crystalline or glassy states characterizing two types of hydrogen bonding: The regular Coulomb-enhanced hydrogen bonds between cation and anion (c-a), and the unusual hydrogen bonds between cation and cation (c-c), which are present despite repulsive Coulomb forces. We measure these sensitive probes of hydrogen bonding by means of solid-state NMR spectroscopy. The DQCCs of (c-a) ion pairs and (c-c) H-bonds are compared to those of salt bridges in supramolecular complexes and those present in molecular liquids. At low temperatures, the (c-c) species successfully compete with the (c-a) ion pairs and dominate the cluster populations. Equilibrium constants obtained from molecular-dynamics (MD) simulations show van't Hoff behavior with small transition enthalpies between the differently H-bonded species. We show that cationic-cluster formation prevents these ILs from crystallizing. With cooling, the (c-c) hydrogen bonds persist, resulting in supercooling and glass formation.

10.
Phys Chem Chem Phys ; 21(36): 20308-20314, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31495864

RESUMO

The enthalpy of vaporization is mainly the amount of the energy needed for transferring quantities from the liquid into the gas phase. It simply describes the energy required to overcome the interaction energy between quantities if those evaporate as monomers as is the case for molecular liquids. The situation for ionic liquids (ILs) is more complex. We do not know the delicate composition of different types of interaction, neither for the liquid nor for the gas phase. Additionally, we have to consider that ILs evaporate as ion pairs which carry substantial interaction energy of all kind into the vapor phase. In this study, we measured the vaporization enthalpies of well-selected hydroxyl-functionalized and non-hydroxyfunctionalized ILs. In particular, we focussed on the case of hydroxyl-functionalized ILs providing possible hydrogen bonding between cation and anion in the liquid as well as in the gas phase. With infrared spectroscopy, we showed that all the hydroxyl groups are involved in hydrogen bonding in the liquid state of the ILs. However, molecular dynamics simulations showed that the evaporating ion pairs also include this hydrogen bond. A detailed analysis of the potential energies for all IL constituents showed that the hydrogen bond hinders favourable interaction between the polarizable ring of the cations and the anions leading to higher vaporization enthalpies for the hydroxyl-functionalized ILs.

11.
Phys Chem Chem Phys ; 21(33): 18092-18098, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31389440

RESUMO

We address the cooperative hydrogen bonding interactions in play between the ionic constituents of ionic liquids (ILs) with particular attention to those involving the attractive interactions between two cations in the system 1-(2-hydroxyethyl)pyridinium tetrafluoroborate [HEPy][BF4]. This is accomplished by comparing the temperature-dependent linear infrared spectra of [HEPy][BF4] with that of the molecular mimic of its cation, 2-phenylethanol (PhenEthOH). We then explored the structural motifs of these H-bonded configurations at the molecular level by analyzing the cryogenic ion vibrational predissociation spectroscopy of cold (∼35 K) gas phase cluster ions with quantum chemical methods. The analysis of the OH stretching bands reveals the formation of the various binding motifs ranging from the common +OHBF4- interaction in ion-pairs (c-a) to the unusual +OH+OH interaction (c-c) in linear and cyclic, homodromic H-bonding domains. Replacing ion-pairs by the molecular (neutral) analogue of the IL cation also results in the formation of positively charged cyclic motifs, with the bands of the gas phase cationic cyclic tetramer (HEPy+)(PhenEthOH)3 appearing quite close to those assigned previously to cyclic tetramers in the liquid. These conclusions are supported by density functional theory (DFT) calculations of the cationic and neutral clusters as well as the local structures in the liquid. Our combined experimental and theoretical approach for the gas and the liquid phases provides important insight into the competition between differently H-bonded and charged constituents in liquids.

12.
Angew Chem Int Ed Engl ; 58(37): 12887-12892, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31177605

RESUMO

We characterize the double-faced nature of hydrogen bonding in hydroxy-functionalized ionic liquids by means of neutron diffraction with isotopic substitution (NDIS), molecular dynamics (MD) simulations, and quantum chemical calculations. NDIS data are fit using the empirical potential structure refinement technique (EPSR) to elucidate the nearest neighbor H⋅⋅⋅O and O⋅⋅⋅O pair distribution functions for hydrogen bonds between ions of opposite charge and the same charge. Despite the presence of repulsive Coulomb forces, the cation-cation interaction is stronger than the cation-anion interaction. We compare the hydrogen-bond geometries of both "doubly charged hydrogen bonds" with those reported for molecular liquids, such as water and alcohols. In combination, the NDIS measurements and MD simulations reveal the subtle balance between the two types of hydrogen bonds: The small transition enthalpy suggests that the elusive like-charge attraction is almost competitive with conventional ion-pair formation.

13.
Angew Chem Int Ed Engl ; 57(47): 15364-15368, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30303295

RESUMO

We address the formation of hydrogen bonded domains among the cationic constituents of the ionic liquid (IL) 1-(3-hydroxypropyl)pyridinium tetrafluoroborate [HPPy][BF4 ] by means of cryogenic ion vibrational predissociation spectroscopy of cold (ca. 35 K) gas-phase cluster ions and quantum chemistry. Specifically, analysis of the OH stretching bands reveals a chain-like OH⋅⋅⋅OH⋅⋅⋅OH⋅⋅⋅BF4 - binding motif involving the three cations in the cationic quinary cluster ion (HPPy+ )3 (BF4 - )2 . Calculations show that this cooperative H-bond attraction compensates for the repulsive Coulomb forces and results in stable complexes that successfully compete with those in which the OH groups are predominantly attached to the counter anions. Our combined experimental and theoretical approach provides insight into the cooperative effects that lead to the formation of hydrogen bonded domains involving the cationic constituents of ILs.

14.
Sci Rep ; 8(1): 14753, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283059

RESUMO

"Unlike charges attract, but like charges repel". This conventional wisdom has been recently challenged for ionic liquids. It could be shown that like-charged ions attract each other despite the powerful opposing electrostatic forces. In principle, cooperative hydrogen bonding between ions of like-charge can overcome the repulsive Coulomb interaction while pushing the limits of chemical bonding. The key challenge of this solvation phenomenon is to establish design principles for the efficient formation of clusters of like-charged ions in ionic liquids. This is realised here for a set of well-suited ionic liquids including the same hydrophobic anion but different cations all equipped with hydroxyethyl groups for possible H-bonding. The formation of H-bonded cationic clusters can be controlled by the delocalization of the positive charge on the cations. Strongly localized charge results in cation-anion interaction, delocalized charge leads to the formation of cationic clusters. For the first time we can show, that the cationic clusters influence the properties of ILs. ILs comprising these clusters can be supercooled and form glasses. Crystalline structures are obtained only, if the ILs are dominantly characterized by the attraction between opposite-charged ions resulting in conventional ion pairs. That may open a new path for controlling glass formation and crystallization. The glass temperatures and the phase transitions of the ILs are observed by differential scanning calorimetry (DSC) and infrared (IR) spectroscopy.

15.
J Phys Chem Lett ; 9(11): 2979-2984, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29750531

RESUMO

We address the competition between intermolecular forces underlying the recent observation that ionic liquids (ILs) with a hydroxyl-functionalized cation can form domains with attractive interactions between the nominally repulsive positively charged constituents. Here we show that this behavior is present even in the isolated ternary (HEMIm+)2NTf2- complex (HEMIm+ = 1-(2-hydroxyethyl)-3-methylimidazolium) cooled to about 35 K in a photodissociation mass spectrometer. Of the three isomers isolated by double resonance techniques, one is identified to exhibit direct contact between the cations. This linkage involves a cooperative H-bond wherein the OH group on one cation binds to the OH group on the other, which then attaches to the basic N atom of the anion. Formation of this motif comes at the expense of the usually dominant interaction of the acidic C(2)H group on the Im ring with molecular anions, as evidenced by isomer-dependent shifts in the C(2)H vibrational fundamentals.

16.
Chemphyschem ; 19(14): 1691-1695, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29633456

RESUMO

Quantum chemical calculations have been employed to study kinetically stable cationic clusters, wherein the monovalent cations are trapped by hydrogen bonding despite strongly repulsive electrostatic forces. We calculated linear and cyclic clusters of the hydroxy-functionalized cation N-(3-hydroxypropyl) pyridinium, commonly used as cation in ionic liquids. The largest kinetically stable cluster was a cyclic hexamer that very much resembles the structural motifs of molecular clusters, as known for water and alcohols. Surprisingly, strong cooperative hydrogen bonds overcome electrostatic repulsion and result in cationic clusters with a high net charge up to Q=+6e. The structural, spectroscopic, and electronic signatures of the cationic and related molecular clusters of 3-phenyl-1-propanol could be correlated to NBO parameters, supporting the existence of "anti-electrostatic" hydrogen bonds (AEHB), as recently suggested by Weinhold. We also showed that dispersion forces enhance the cationic cluster formation and compensate the electrostatic repulsion of one additional positive charge.

17.
Phys Chem Chem Phys ; 20(8): 5617-5625, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29410998

RESUMO

Ion pairing is one of the most fundamental atomic interactions in chemistry and biology. In contrast, pairing between like-charged ions remains an elusive concept. So far, this phenomenon was observed only for large-scaled structures, assemblies, stabilizing frameworks, or in aqueous solution wherein like-charge attraction is supported by mediating water molecules. Recently, we reported the formation of cationic clusters in pure ionic liquids (ILs) which all include hydroxyl groups (OH) for possible hydrogen bonding. In such structures like-charge repulsion is overcome by cooperative hydrogen bonds. The vibrational bands in the OH-stretch region of the infrared spectra can be clearly assigned to H-bonded ion pairs (c-a) or to H-bonded cationic clusters (c-c). The equilibrium between both types of ionic clusters can be controlled by using the same cation but differently strong interacting anions. In the present work, we study the influence of the cationic cluster formation on structural and dynamical NMR properties of ionic liquids, where we know that they form cationic clusters to different extent. First, we measure proton chemical shifts, δ1H, and determine deuteron quadrupole coupling constants, χD, from a calculated relation between both NMR properties. Reliable χD values for the liquid phase are a prerequisite for calculating reorientational correlation times, τOH, from measured deuteron relaxation times, T1. It is shown that the correlation times are significantly influenced by the amount of cationic clusters present in the IL. The Stokes-Einstein-Debye (SED) relation is valid for the ILs wherein H-bonded ion pairs (c-a) are the dominant species. With increasing cationic cluster (c-c) formation of e.g. cyclic tetramers, SED breaks down because of the structural heterogeneities.

18.
Phys Chem Chem Phys ; 19(29): 18854-18862, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28653711

RESUMO

Whereas ion pairing is one of the most fundamental atomic interactions in chemistry and biology, pairing between like-charged ions remains an elusive concept. This phenomenon was only reported for large-scaled structures, assemblies or stabilizing frameworks. Recently, we could report the formation of cationic clusters in pure ionic liquids. In such structures like-charge repulsion is attenuated by cooperative hydrogen bonds. In the present work, we investigate the possible formation of cationic clusters in the gas phase beyond those found in the neutral ionic liquids wherein the positive charges are fully balanced by anions. Based on the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide we calculated differently charged cationic clusters including varying numbers of cation-like molecules (3-3-dimethyl-1-butanol) or ionic liquid anions (NTf2). We give the number of molecules or anions which are needed to transfer the cationic clusters from the meta-stable into the thermodynamically stable regime. We analyze the charge, the size and the structural motif of these clusters. A particular focus we put on the cooperativity of hydrogen bonding and the role of dispersion forces for the cluster stability. We also show that interaction energies and charge transfer within the cationic clusters can be related to spectroscopic parameters such as NMR chemical shifts and IR vibrational frequencies. Finally, we suggest clusters which should be observable in demanding gas phase experiments.

19.
Angew Chem Int Ed Engl ; 56(2): 496-500, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27990721

RESUMO

The properties of ionic liquids are described by a subtle balance between Coulomb interaction, hydrogen bonding, and dispersion forces. We show that lowering the attractive Coulomb interaction by choosing weakly coordinating anions leads to the formation of cationic clusters. These clusters of like-charged ions are stabilized by cooperative hydrogen bonding and controlled by the interaction potential of the anion. IR and NMR spectroscopy combined with computational methods are used to detect and characterize these unusual, counter-intuitively formed clusters. They can be only observed for weakly coordinating anions. When cationic clusters are formed, cyclic tetramers are particularly stable. Therein, cooperative hydrogen-bond attraction can compete with like-charge repulsion. We present a simple but effective spectroscopic scale for the possibility of like-charge attraction in ionic liquids, based on IR and NMR signatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...