Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659789

RESUMO

Developmental and Epileptic Encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.

2.
J Cereb Blood Flow Metab ; 44(6): 911-924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38230631

RESUMO

Imaging hemodynamic responses to interictal spikes holds promise for presurgical epilepsy evaluations. Understanding the hemodynamic response function is crucial for accurate interpretation. Prior interictal neurovascular coupling data primarily come from anesthetized animals, impacting reliability. We simultaneously monitored calcium fluctuations in excitatory neurons, hemodynamics, and local field potentials (LFP) during bicuculline-induced interictal events in both isoflurane-anesthetized and awake mice. Isoflurane significantly affected LFP amplitude but had little impact on the amplitude and area of the calcium signal. Anesthesia also dramatically blunted the amplitude and latency of the hemodynamic response, although not its area of spread. Cerebral blood volume change provided the best spatial estimation of excitatory neuronal activity in both states. Targeted silencing of the thalamus in awake mice failed to recapitulate the impact of anesthesia on hemodynamic responses suggesting that isoflurane's interruption of the thalamocortical loop did not contribute either to the dissociation between the LFP and the calcium signal nor to the alterations in interictal neurovascular coupling. The blood volume increase associated with interictal spikes represents a promising mapping signal in both the awake and anesthetized states.


Assuntos
Hemodinâmica , Isoflurano , Neurônios , Vigília , Animais , Camundongos , Vigília/efeitos dos fármacos , Vigília/fisiologia , Hemodinâmica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Isoflurano/farmacologia , Anestesia , Masculino , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Camundongos Endogâmicos C57BL , Bicuculina/farmacologia , Acoplamento Neurovascular/efeitos dos fármacos , Acoplamento Neurovascular/fisiologia
3.
Epilepsia ; 64(7): 1939-1950, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37133275

RESUMO

OBJECTIVE: Focal epilepsy is thought to be a network disease, in which epileptiform activity can spread noncontiguously through the brain via highly interconnected nodes, or hubs, within existing networks. Animal models confirming this hypothesis are scarce, and our understanding of how distant nodes are recruited is also lacking. Whether interictal spikes (IISs) also create and reverberate through a network is not well understood. METHODS: We injected bicuculline into the S1 barrel cortex and employed multisite local field potential and Thy-1 and parvalbumin (PV) cell mesoscopic calcium imaging during IISs to monitor excitatory and inhibitory cells in two monosynaptically connected nodes and one disynaptically connected node: ipsilateral secondary motor area (iM2), contralateral S1 (cS1), and contralateral secondary motor area (cM2). Node participation was analyzed with spike-triggered coactivity maps. Experiments were repeated with 4-aminopyridine as an epileptic agent. RESULTS: We found that each IIS reverberated throughout the network, differentially recruiting both excitatory and inhibitory cells in all connected nodes. The strongest response was found in iM2. Paradoxically, node cM2, which was connected disynaptically to the focus, was recruited more intensely than node cS1, which was connected monosynaptically. The explanation for this effect could be found in node-specific excitatory/inhibitory (E/I) balance, as cS1 demonstrated greater PV inhibitory cell activation compared with cM2, where Thy-1 excitatory cells were more heavily recruited. SIGNIFICANCE: Our data show that IISs spread noncontiguously by exploiting fiber pathways that connect nodes in a distributed network and that E/I balance plays a critical role in node recruitment. This multinodal IIS network model can be used to investigate cell-specific dynamics in the spatial propagation of epileptiform activity.


Assuntos
Epilepsia , Animais , Encéfalo , Mapeamento Encefálico , Bicuculina/farmacologia , 4-Aminopiridina
4.
Neuron ; 111(2): 256-274.e10, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36446382

RESUMO

Dysfunction of gamma-aminobutyric acid (GABA)ergic circuits is strongly associated with neurodevelopmental disorders. However, it is unclear how genetic predispositions impact circuit assembly. Using in vivo two-photon and widefield calcium imaging in developing mice, we show that Gabrb3, a gene strongly associated with autism spectrum disorder (ASD) and Angelman syndrome (AS), is enriched in contralaterally projecting pyramidal neurons and is required for inhibitory function. We report that Gabrb3 ablation leads to a developmental decrease in GABAergic synapses, increased local network synchrony, and long-lasting enhancement in functional connectivity of contralateral-but not ipsilateral-pyramidal neuron subtypes. In addition, Gabrb3 deletion leads to increased cortical response to tactile stimulation at neonatal stages. Using human transcriptomics and neuroimaging datasets from ASD subjects, we show that the spatial distribution of GABRB3 expression correlates with atypical connectivity in these subjects. Our studies reveal a requirement for Gabrb3 during the emergence of interhemispheric circuits for sensory processing.


Assuntos
Transtorno do Espectro Autista , Camundongos , Humanos , Animais , Transtorno do Espectro Autista/genética , Córtex Somatossensorial , Células Piramidais/fisiologia , Sinapses , Tato , Receptores de GABA-A/genética
5.
Nature ; 608(7921): 153-160, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831504

RESUMO

Memory formation involves binding of contextual features into a unitary representation1-4, whereas memory recall can occur using partial combinations of these contextual features. The neural basis underlying the relationship between a contextual memory and its constituent features is not well understood; in particular, where features are represented in the brain and how they drive recall. Here, to gain insight into this question, we developed a behavioural task in which mice use features to recall an associated contextual memory. We performed longitudinal imaging in hippocampus as mice performed this task and identified robust representations of global context but not of individual features. To identify putative brain regions that provide feature inputs to hippocampus, we inhibited cortical afferents while imaging hippocampus during behaviour. We found that whereas inhibition of entorhinal cortex led to broad silencing of hippocampus, inhibition of prefrontal anterior cingulate led to a highly specific silencing of context neurons and deficits in feature-based recall. We next developed a preparation for simultaneous imaging of anterior cingulate and hippocampus during behaviour, which revealed robust population-level representation of features in anterior cingulate, that lag hippocampus context representations during training but dynamically reorganize to lead and target recruitment of context ensembles in hippocampus during recall. Together, we provide the first mechanistic insights into where contextual features are represented in the brain, how they emerge, and how they access long-range episodic representations to drive memory recall.


Assuntos
Giro do Cíngulo , Hipocampo , Rememoração Mental , Modelos Neurológicos , Animais , Mapeamento Encefálico , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Giro do Cíngulo/citologia , Giro do Cíngulo/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Estudos Longitudinais , Rememoração Mental/fisiologia , Camundongos , Inibição Neural
6.
Curr Biol ; 32(12): 2654-2667.e4, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584697

RESUMO

Perception in multiple sensory modalities is an active process that involves exploratory behaviors. In humans and other primates, vision results from sensory sampling guided by saccadic eye movements. Saccades are known to modulate visual perception, and a corollary discharge signal associated with saccades appears to establish a sense of visual stability. Neural recordings have shown that saccades also modulate activity widely across the brain. To investigate the neural basis of saccadic effects on perception, simultaneous recordings from multiple neurons in area V1 were made as animals performed a contrast detection task. Perceptual and neural measures were compared when the animal made real saccades that brought a stimulus into V1 receptive fields and when simulated saccades were made (identical retinal stimulation but no eye movement). When real saccades were made and low spatial frequency stimuli were presented, we observed a reduction in both perceptual sensitivity and neural activity compared with simulated saccades; conversely, with higher spatial frequency stimuli, saccades increased visual sensitivity and neural activity. The performance of neural decoders, which used the activity of the population of simultaneously recorded neurons, showed saccade effects on sensitivity that mirrored the frequency-dependent perceptual changes, suggesting that the V1 population activity could support the perceptual effects. A minority of V1 neurons had significant choice probabilities, and the saccades decreased both average choice probability and pairwise noise correlations. Taken together, the findings suggest that a signal related to saccadic eye movements alters V1 spiking to increase the independence of spiking neurons and bias the system toward processing higher spatial frequencies, presumably to enhance object recognition. The effects of saccades on visual perception and noise correlations appear to parallel effects observed in other sensory modalities, suggesting a general principle of active sensory processing.


Assuntos
Movimentos Sacádicos , Percepção Visual , Animais , Neurônios/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Visão Ocular , Percepção Visual/fisiologia
7.
Brain ; 145(7): 2347-2360, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35196385

RESUMO

Seizures are thought to arise from an imbalance of excitatory and inhibitory neuronal activity. While most classical studies suggest excessive excitatory neural activity plays a generative role, some recent findings challenge this view and instead argue that excessive activity in inhibitory neurons initiates seizures. We investigated this question of imbalance in a zebrafish seizure model with two-photon imaging of excitatory and inhibitory neuronal activity throughout the brain using a nuclear-localized calcium sensor. We found that seizures consistently initiated in circumscribed zones of the midbrain before propagating to other brain regions. Excitatory neurons were both more prevalent and more likely to be recruited than inhibitory neurons in initiation as compared with propagation zones. These findings support a mechanistic picture whereby seizures initiate in a region of hyperexcitation, then propagate more broadly once inhibitory restraint in the surround is overcome.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Encéfalo , Neurônios , Convulsões
8.
J Neurophysiol ; 127(2): 393-396, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986048

RESUMO

Epilepsy is often labeled as a network disorder, though a common view of seizures holds that they initiate in a singular onset zone before expanding contiguously outward. A recent report by Choy et al. (Choy M, Dadgar-Kiani E, Cron GO, Duffy BA, Schmid F, Edelman BJ, Asaad M, Chan RW, Vahdat S, Lee JH. Neuron 2021 Oct 23: S0896-6273(21)00778-9.) leverages new tools to study whole brain dynamics during epileptic seizures originating in the hippocampus. Cell-type-specific kindling and functional imaging revealed how various brain regions were recruited to seizures and uncovered a novel form of migrating seizure core.


Assuntos
Epilepsia , Excitação Neurológica , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Excitação Neurológica/fisiologia , Optogenética , Convulsões/fisiopatologia
9.
Front Neurosci ; 15: 704834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366781

RESUMO

Unambiguously identifying an epileptic focus with high spatial resolution is a challenge, especially when no anatomic abnormality can be detected. Neurovascular coupling (NVC)-based brain mapping techniques are often applied in the clinic despite a poor understanding of ictal NVC mechanisms, derived primarily from recordings in anesthetized animals with limited spatial sampling of the ictal core. In this study, we used simultaneous wide-field mesoscopic imaging of GCamp6f and intrinsic optical signals (IOS) to record the neuronal and hemodynamic changes during acute ictal events in awake, behaving mice. Similar signals in isoflurane-anesthetized mice were compared to highlight the unique characteristics of the awake condition. In awake animals, seizures were more focal at the onset but more likely to propagate to the contralateral hemisphere. The HbT signal, derived from an increase in cerebral blood volume (CBV), was more intense in awake mice. As a result, the "epileptic dip" in hemoglobin oxygenation became inconsistent and unreliable as a mapping signal. Our data indicate that CBV-based imaging techniques should be more accurate than blood oxygen level dependent (BOLD)-based imaging techniques for seizure mapping in awake behaving animals.

10.
Vis Neurosci ; 35: E025, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30511913

RESUMO

Neurons in visual areas of the brain are generally characterized by the increase in firing rate that occurs when a stimulus is flashed on in the receptive field (RF). However, neurons also increase their firing rate when a stimulus is turned off. These "termination responses" or "after-discharges" that occur with flashed stimuli have been observed in area V1 and they may be important for vision as stimulus terminations have been shown to influence visual perception. The goal of the present study was to determine the strength of termination responses in the more natural situation in which eye movements move a stimulus out of an RF. We find that termination responses do occur in macaque V1 when termination results from a saccadic eye movement, but they are smaller in amplitude compared to flashed-off stimuli. Furthermore, there are termination responses even in the absence of visual stimulation. These findings demonstrate that termination responses are a component of naturalistic vision. They appear to be based on both visual and nonvisual signals in visual cortex. We speculate that the weakening of termination responses might be a neural correlate of saccadic suppression, the loss of perceptual sensitivity around the time of saccades.


Assuntos
Neurônios/fisiologia , Movimentos Sacádicos/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Fixação Ocular/fisiologia , Macaca mulatta , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia , Campos Visuais/fisiologia
11.
Front Integr Neurosci ; 12: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692920

RESUMO

Approximately three times per second, human visual perception is interrupted by a saccadic eye movement. In addition to taking the eyes to a new location, several lines of evidence suggest that the saccades play multiple roles in visual perception. Indeed, it may be crucial that visual processing is informed about movements of the eyes in order to analyze visual input distinctly and efficiently on each fixation and preserve stable visual perception of the world across saccades. A variety of studies has demonstrated that activity in multiple brain areas is modulated by saccades. The hypothesis tested here is that these signals carry significant information that could be used in visual processing. To test this hypothesis, local field potentials (LFPs) were simultaneously recorded from multiple electrodes in macaque primary visual cortex (V1); support vector machines (SVMs) were used to classify the peri-saccadic LFPs. We find that LFPs in area V1 carry information that can be used to distinguish neural activity associated with fixations from saccades, precisely estimate the onset time of fixations, and reliably infer the directions of saccades. This information may be used by the brain in processes including visual stability, saccadic suppression, receptive field (RF) remapping, fixation amplification, and trans-saccadic visual perception.

12.
J Neurophysiol ; 117(2): 492-508, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27832603

RESUMO

Contrast sensitivity is fundamental to natural visual processing and an important tool for characterizing both visual function and clinical disorders. We simultaneously measured contrast sensitivity and neural contrast response functions and compared measurements in common laboratory conditions with naturalistic conditions. In typical experiments, a subject holds fixation and a stimulus is flashed on, whereas in natural vision, saccades bring stimuli into view. Motivated by our previous V1 findings, we tested the hypothesis that perceptual contrast sensitivity is lower in natural vision and that this effect is associated with corresponding changes in V1 activity. We found that contrast sensitivity and V1 activity are correlated and that the relationship is similar in laboratory and naturalistic paradigms. However, in the more natural situation, contrast sensitivity is reduced up to 25% compared with that in a standard fixation paradigm, particularly at lower spatial frequencies, and this effect correlates with significant reductions in V1 responses. Our data suggest that these reductions in natural vision result from fast adaptation on one fixation that lowers the response on a subsequent fixation. This is the first demonstration of rapid, natural-image adaptation that carries across saccades, a process that appears to constantly influence visual sensitivity in natural vision. NEW & NOTEWORTHY: Visual sensitivity and activity in brain area V1 were studied in a paradigm that included saccadic eye movements and natural visual input. V1 responses and contrast sensitivity were significantly reduced compared with results in common laboratory paradigms. The parallel neural and perceptual effects of eye movements and stimulus complexity appear to be due to a form of rapid adaptation that carries across saccades.


Assuntos
Potenciais de Ação/fisiologia , Sensibilidades de Contraste/fisiologia , Neurônios/fisiologia , Visão Ocular/fisiologia , Córtex Visual/citologia , Animais , Área Sob a Curva , Comportamento de Escolha/fisiologia , Macaca mulatta , Masculino , Estimulação Luminosa , Movimentos Sacádicos/fisiologia , Fatores de Tempo
13.
Lab Anim (NY) ; 46(1): 6, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991872
14.
Lab Anim (NY) ; 46(1): 7, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991877
16.
Lab Anim (NY) ; 45(7): 243, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27327000
18.
Lab Anim (NY) ; 45(6): 198, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27203251
19.
Lab Anim (NY) ; 45(6): 199, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27203252
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...