Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(1): 561-574, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36548126

RESUMO

Neurotransmitters and neuromodulators mediate communication between neurons and other cell types; knowledge of release dynamics is critical to understanding their physiological role in normal and pathological brain function. Investigation into transient neurotransmitter dynamics has largely been hindered due to electrical and material requirements for electrochemical stimulation and recording. Current systems require complex electronics for biasing and amplification and rely on materials that offer limited sensor selectivity and sensitivity. These restrictions result in bulky, tethered, or battery-powered systems impacting behavior and that require constant care of subjects. To overcome these challenges, we demonstrate a fully implantable, wireless, and battery-free platform that enables optogenetic stimulation and electrochemical recording of catecholamine dynamics in real time. The device is nearly 1/10th the size of previously reported examples and includes a probe that relies on a multilayer electrode architecture featuring a microscale light emitting diode (µ-LED) and a carbon nanotube (CNT)-based sensor with sensitivities among the highest recorded in the literature (1264.1 nA µM-1 cm-2). High sensitivity of the probe combined with a center tapped antenna design enables the realization of miniaturized, low power circuits suitable for subdermal implantation even in small animal models such as mice. A series of in vitro and in vivo experiments highlight the sensitivity and selectivity of the platform and demonstrate its capabilities in freely moving, untethered subjects. Specifically, a demonstration of changes in dopamine concentration after optogenetic stimulation of the nucleus accumbens and real-time readout of dopamine levels after opioid and naloxone exposure in freely behaving subjects highlight the experimental paradigms enabled by the platform.


Assuntos
Catecolaminas , Optogenética , Camundongos , Animais , Dopamina , Tecnologia sem Fio , Próteses e Implantes
2.
Int IEEE EMBS Conf Neural Eng ; 2021: 742-745, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34917236

RESUMO

Validation of neural probe performance often includes implantation in live animals, to assess ability to detect and distinguish signals generated by individual neurons. While this method is informative, an effective in vitro alternative would streamline device development and improve ethical considerations by reducing the use of animals in the validation of neural recording devices. Here, we describe a simple system using ball electrodes to apply multiple neural waveforms to phosphate buffered saline, which are simultaneously recorded by a microelectrode probe. Using this technique, our neural probe was able to detect and distinguish spikes from multiple units of roughly physiological amplitudes (~100 microvolts peak to peak), indicating promise as an in vitro alternative to animal testing for initial validation of neural recording devices.

3.
Biophys J ; 118(11): 2769-2782, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32402244

RESUMO

Medin, a 50-amino-acid cleavage product of the milk fat globule-EGF factor 8 protein, is one of the most common forms of localized amyloid found in the vasculature of individuals older than 50 years. Medin induces endothelial dysfunction and vascular inflammation, yet despite its prevalence in the human aorta and multiple arterial beds, little is known about the nature of its pathology. Medin oligomers have been implicated in the pathology of aortic aneurysm, aortic dissection, and more recently, vascular dementia. Recent in vitro biomechanical measurements found increased oligomer levels in aneurysm patients with altered aortic wall integrity. Our results suggest an oligomer-mediated toxicity mechanism for medin pathology. Using lipid bilayer electrophysiology, we show that medin oligomers induce ionic membrane permeability by pore formation. Pore activity was primarily observed for preaggregated medin species from the growth-phase and rarely for lag-phase species. Atomic force microscopy (AFM) imaging of medin aggregates at different stages of aggregation revealed the gradual formation of flat domains resembling the morphology of supported lipid bilayers. Transmission electron microscopy images showed the coexistence of compact oligomers, largely consistent with the AFM data, and larger protofibrillar structures. Circular dichroism spectroscopy revealed the presence of largely disordered species and suggested the presence of ß-sheets. This observation and the significantly lower thioflavin T fluorescence emitted by medin aggregates compared to amyloid-ß fibrils, along with the absence of amyloid fibers in the AFM and transmission electron microscopy images, suggest that medin aggregation into pores follows a nonamyloidogenic pathway. In silico modeling by molecular dynamics simulations provides atomic-level structural detail of medin pores with the CNpNC barrel topology and diameters comparable to values estimated from experimental pore conductances.


Assuntos
Amiloide , Aorta , Peptídeos beta-Amiloides , Humanos , Bicamadas Lipídicas , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...