Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37527522

RESUMO

The copackaging of mRNAs into biomolecular condensates called germ granules is a conserved strategy to posttranscriptionally regulate germline mRNAs. In Drosophila melanogaster, mRNAs accumulate in germ granules by forming homotypic clusters, aggregates containing multiple transcripts from the same gene. Nucleated by Oskar (Osk), homotypic clusters are generated through a stochastic seeding and self-recruitment process that requires the 3' untranslated region (UTR) of germ granule mRNAs. Interestingly, the 3' UTR belonging to germ granule mRNAs, such as nanos (nos), have considerable sequence variations among Drosophila species and we hypothesized that this diversity influences homotypic clustering. To test our hypothesis, we investigated the homotypic clustering of nos and polar granule component (pgc) in four Drosophila species and concluded that clustering is a conserved process used to enrich germ granule mRNAs. However, we discovered germ granule phenotypes that included significant changes in the abundance of transcripts present in species' homotypic clusters, which also reflected diversity in the number of coalesced primordial germ cells within their embryonic gonads. By integrating biological data with computational modeling, we found that multiple mechanisms underlie naturally occurring germ granule diversity, including changes in nos, pgc, osk levels and/or homotypic clustering efficacy. Furthermore, we demonstrated how the nos 3' UTR from different species influences nos clustering, causing granules to have ∼70% less nos and increasing the presence of defective primordial germ cells. Our results highlight the impact that evolution has on germ granules, which should provide broader insight into processes that modify compositions and activities of other classes of biomolecular condensate.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Grânulos de Ribonucleoproteínas de Células Germinativas , Regiões 3' não Traduzidas , Células Germinativas , RNA Mensageiro/genética
2.
FEBS Lett ; 597(14): 1848-1867, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235728

RESUMO

Me31B/DDX6 is a DEAD-box family RNA helicase playing roles in post-transcriptional RNA regulation in different cell types and species. Despite the known motifs/domains of Me31B, the in vivo functions of the motifs remain unclear. Here, we used the Drosophila germline as a model and used CRISPR to mutate the key Me31B motifs/domains: helicase domain, N-terminal domain, C-terminal domain and FDF-binding motif. Then, we performed screening characterization on the mutants and report the effects of the mutations on the Drosophila germline, on processes such as fertility, oogenesis, embryo patterning, germline mRNA regulation and Me31B protein expression. The study indicates that the Me31B motifs contribute different functions to the protein and are needed for proper germline development, providing insights into the in vivo working mechanism of the helicase.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células Germinativas/metabolismo , Mutação
3.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865184

RESUMO

The co-packaging of mRNAs into biomolecular condensates called germ granules is a conserved strategy to post-transcriptionally regulate mRNAs that function in germline development and maintenance. In D. melanogaster, mRNAs accumulate in germ granules by forming homotypic clusters, aggregates that contain multiple transcripts from a specific gene. Nucleated by Oskar (Osk), homotypic clusters in D. melanogaster are generated through a stochastic seeding and self-recruitment process that requires the 3' UTR of germ granule mRNAs. Interestingly, the 3' UTR belonging to germ granule mRNAs, such as nanos (nos), have considerable sequence variations among Drosophila species. Thus, we hypothesized that evolutionary changes in the 3' UTR influences germ granule development. To test our hypothesis, we investigated the homotypic clustering of nos and polar granule component (pgc) in four Drosophila species and concluded that homotypic clustering is a conserved developmental process used to enrich germ granule mRNAs. Additionally, we discovered that the number of transcripts found in nos and/or pgc clusters could vary significantly among species. By integrating biological data with computational modeling, we determined that multiple mechanisms underlie naturally occurring germ granule diversity, including changes in nos, pgc, osk levels, and/or homotypic clustering efficacy. Finally, we found that the nos 3' UTR from different species can alter the efficacy of nos homotypic clustering, resulting in germ granules with reduced nos accumulation. Our findings highlight the impact that evolution has on the development of germ granules and may provide insight into processes that modify the content of other classes of biomolecular condensates.

4.
Biophys J ; 121(8): 1465-1482, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35288123

RESUMO

The packaging of specific mRNAs into ribonucleoprotein granules called germ granules is required for germline proliferation and maintenance. During Drosophila germ granule development, mRNAs such as nanos (nos) and polar granule component (pgc) localize to germ granules through a stochastic seeding and self-recruitment process that generates homotypic clusters: aggregates containing multiple copies of a specific transcript. Germ granules vary in mRNA composition with respect to the different transcripts that they contain and their quantity. However, what influences germ granule mRNA composition during development is unclear. To gain insight into how germ granule mRNA heterogeneity arises, we created a computational model that simulates granule development. Although the model includes known mechanisms that were converted into mathematical representations, additional unreported mechanisms proved to be essential for modeling germ granule formation. The model was validated by predicting defects caused by changes in mRNA and protein abundance. Broader application of the model was demonstrated by quantifying nos and pgc localization efficacies and the contribution that an element within the nos 3' untranslated region has on clustering. For the first time, a mathematical representation of Drosophila germ granule formation is described, offering quantitative insight into how mRNA compositions arise while providing a new tool for guiding future studies.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Simulação por Computador , Grânulos Citoplasmáticos/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Grânulos de Ribonucleoproteínas de Células Germinativas , Células Germinativas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Development ; 147(15)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32680934

RESUMO

To bridge the gap between qualitative and quantitative analyses of the epidermal growth factor receptor (EGFR) in tissues, we generated an sfGFP-tagged EGF receptor (EGFR-sfGFP) in Drosophila The homozygous fly appears similar to wild type with EGFR expression and activation patterns that are consistent with previous reports in the ovary, early embryo, and imaginal discs. Using ELISA, we quantified an average of 1100, 6200 and 2500 receptors per follicle cell (FC) at stages 8/9, 10 and ≥11 of oogenesis, respectively. Interestingly, the spatial localization of the EGFR to the apical side of the FCs at early stages depended on the TGFα-like ligand Gurken. At later stages, EGFR localized to basolateral positions of the FCs. Finally, we followed the endosomal localization of EGFR in the FCs. The EGFR colocalized with the late endosome, but no significant colocalization of the receptor was found with the early endosome. The EGFR-sfGFP fly is an exciting new resource for studying cellular localization and regulation of EGFR in tissues.


Assuntos
Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Folículo Ovariano/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Endossomos/genética , Endossomos/metabolismo , Células Epiteliais/citologia , Epitélio/metabolismo , Receptores ErbB/genética , Feminino , Folículo Ovariano/citologia , Receptores de Peptídeos de Invertebrados/genética , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo
7.
Development ; 145(22)2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30333216

RESUMO

Specification and development of Drosophila germ cells depend on molecular determinants within the germ plasm, a specialized cytoplasmic domain at the posterior of the embryo. Localization of numerous mRNAs to the germ plasm occurs by their incorporation, as single-transcript ribonucleoprotein (RNP) particles, into complex RNP granules called polar granules. Incorporation of mRNAs into polar granules is followed by recruitment of additional like transcripts to form discrete homotypic clusters. The cis-acting localization signals that target mRNAs to polar granules and promote homotypic clustering remain largely uncharacterized. Here, we show that the polar granule component (pgc) and germ cell-less (gcl) 3' untranslated regions contain complex localization signals comprising multiple, independently weak and partially functionally redundant localization elements (LEs). We demonstrate that targeting of pgc to polar granules and self-assembly into homotypic clusters are functionally separable processes mediated by distinct classes of LEs. We identify a sequence motif shared by other polar granule mRNAs that contributes to homotypic clustering. Our results suggest that mRNA localization signal complexity may be a feature required by the targeting and self-recruitment mechanism that drives germ plasm mRNA localization.


Assuntos
Polaridade Celular/genética , Grânulos Citoplasmáticos/metabolismo , Drosophila melanogaster/genética , Sequências Reguladoras de Ácido Nucleico/genética , Regiões 3' não Traduzidas/genética , Animais , Pareamento de Bases , Sequência Conservada/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos/genética , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Curr Biol ; 28(12): 1872-1881.e3, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29861136

RESUMO

The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Fator B de Elongação Transcricional Positiva/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Animais , Grânulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário , Células Germinativas/crescimento & desenvolvimento , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
9.
Development ; 141(24): 4710-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25468939

RESUMO

Drosophila eggshells display remarkable morphological diversity among species; however, the molecular origin of this structural diversification is mostly unknown. Here, we analyzed the dorsal ridge (DR), a lumen-like structure along the dorsal side of eggshells, from numerous Drosophila species. This structure varies in length and width across species, and is absent from D. melanogaster eggshells. We associated DR formation with distinct spatiotemporal changes in epidermal growth factor receptor (EGFR) activation, which acts as a key receptor in eggshell patterning. We show that changes in the distribution of the TGFα-like ligand Gurken (GRK), a crucial ligand for axis formation, underlies EGFR activation and DR formation in D. willistoni. Furthermore, we demonstrate that GRK from D. willistoni rescues a grk-null D. melanogaster fly and, remarkably, it is also sufficient to generate a DR-like structure on its eggshell.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/genética , Evolução Molecular , Óvulo/citologia , Óvulo/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Animais , Clonagem Molecular , Primers do DNA/genética , Drosophila/metabolismo , Imunoensaio , Hibridização In Situ , Microscopia Confocal , Microscopia Eletrônica de Varredura , Interferência de RNA , Especificidade da Espécie
10.
Mol Biol Evol ; 31(1): 154-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24109603

RESUMO

Changes in gene regulation are associated with the evolution of morphologies. However, the specific sequence information controlling gene expression is largely unknown and discovery is time and labor consuming. We use the intricate patterning of follicle cells to probe species' relatedness in the absence of sequence information. We focus on one of the major families of genes that pattern the Drosophila eggshell, the Chorion protein (Cp). Systematically screening for the spatiotemporal patterning of all nine Cp genes in three species (Drosophila melanogaster, D. nebulosa, and D. willistoni), we found that most genes are expressed dynamically during mid and late stages of oogenesis. Applying an annotation code, we transformed the data into binary matrices that capture the complexity of gene expression. Gene patterning is sufficient to predict species' relatedness, consistent with their phylogeny. Surprisingly, we found that expression domains of most genes are different among species, suggesting that Cp regulation is rapidly evolving. In addition, we found a morphological novelty along the dorsalmost side of the eggshell, the dorsal ridge. Our matrix analysis placed the dorsal ridge domain in a cluster of epidermal growth factor receptor associated domains, which was validated through genetic and chemical perturbations. Expression domains are regulated cooperatively or independently by signaling pathways, supporting that complex patterns are combinatorially assembled from simple domains.


Assuntos
Drosophila melanogaster/genética , Drosophila/classificação , Drosophila/genética , Proteínas do Ovo/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Padronização Corporal/genética , Clonagem Molecular , Drosophila melanogaster/classificação , Proteínas do Ovo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Evolução Molecular , Oogênese , Filogenia , Análise de Sequência de DNA , Transdução de Sinais
11.
Biophys J ; 102(8): 1722-30, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22768927

RESUMO

The bone morphogenetic protein (BMP) signaling pathway is a conserved regulator of cellular and developmental processes in animals. The mechanisms underlying BMP signaling activation differ among tissues and mostly reflect changes in the expression of pathway components. BMP signaling is one of the major pathways responsible for the patterning of the Drosophila eggshell, a complex structure derived from a layer of follicle cells (FCs) surrounding the developing oocyte. Activation of BMP signaling in the FCs is dynamic. Initially, signaling is along the anterior-posterior (A/P) axis; later, signaling acquires dorsal-ventral (D/V) polarity. These dynamics are regulated by changes in the expression pattern of the type I BMP receptor thickveins (tkv). We recently found that signaling dynamics and TKV patterning are highly correlated in the FCs of multiple Drosophila species. In addition, we showed that signaling patterns are spatially different among species. Here, we use a mathematical model to simulate the dynamics and differences of BMP signaling in numerous species. This model predicts that qualitative and quantitative changes in receptor expression can lead to differences in the spatial pattern of BMP signaling. We tested these predications experimentally in three different Drosophila species and through genetic perturbations of BMP signaling in D. melanogaster. On the basis of our results, we concluded that changes in tkv patterning can account for the experimentally observed differences in the patterns of BMP signaling in multiple Drosophila species.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Evolução Molecular , Oogênese , Transdução de Sinais , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo
12.
Phys Biol ; 8(4): 045003, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750363

RESUMO

During Drosophila melanogaster oogenesis, the follicular epithelium that envelops the germline cyst gives rise to an elaborate eggshell, which houses the future embryo and mediates its interaction with the environment. A prominent feature of the eggshell is a pair of dorsal appendages, which are needed for embryo respiration. Morphogenesis of this structure depends on broad, a zinc-finger transcription factor, regulated by the EGFR pathway. While much has been learned about the mechanisms of broad regulation by EGFR, current understanding of processes that shape the spatial pattern of broad expression is incomplete. We propose that this pattern is defined by two different phases of EGFR activation: an early, posterior-to-anterior gradient of EGFR signaling sets the posterior boundary of broad expression, while the anterior boundary is set by a later phase of EGFR signaling, distributed in a dorsoventral gradient. This model can explain the wild-type pattern of broad in D. melanogaster, predicts how this pattern responds to genetic perturbations, and provides insight into the mechanisms driving diversification of eggshell patterning. The proposed model of the broad expression pattern can be used as a starting point for the quantitative analysis of a large number of gene expression patterns in Drosophila oogenesis.


Assuntos
Padronização Corporal , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Receptores ErbB/metabolismo , Algoritmos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores ErbB/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
13.
Dev Biol ; 354(1): 151-9, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21402065

RESUMO

The dorsal anterior region of the follicle cells (FCs) in the developing Drosophila egg gives rise to the respiratory eggshell appendages. These tubular structures display a wide range of qualitative and quantitative variations across Drosophila species, providing a remarkable example of a rapidly evolving morphology. In D. melanogaster, the bone morphogenetic protein (BMP) signaling pathway is an important regulator of FCs patterning and dorsal appendages morphology. To explore the mechanisms underlying the diversification of eggshell patterning, we analyzed BMP signaling in the FCs of 16 Drosophila species that span 45 million years of evolution. We found that the spatial patterns of BMP signaling in the FCs are dynamic and exhibit a range of interspecies' variations. In most of the species examined, the dynamics of BMP signaling correlate with the expression of the type I BMP receptor thickveins (tkv). This correlation suggests that interspecies' variations of tkv expression are responsible for the diversification of BMP signaling during oogenesis. This model was supported by genetic manipulations of tkv expression in the FCs of D. melanogaster that successfully recapitulated the signaling diversities found in the other species. Our results suggest that regulation of receptor expression mediates spatial diversification of BMP signaling in Drosophila oogenesis, and they provide insight into a mechanism underlying the evolution of eggshell patterning.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Drosophila/genética , Folículo Ovariano/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Drosophila/classificação , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Microscopia Eletrônica de Varredura , Oogênese/genética , Folículo Ovariano/citologia , Folículo Ovariano/ultraestrutura , Filogenia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Especificidade da Espécie , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...