Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9664, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671057

RESUMO

The nasal potential difference test (nPD) is an electrophysiological measurement which is altered in patients and animal models with cystic fibrosis (CF). Because protocols and outcomes vary substantially between laboratories, there are concerns over its validity and precision. We performed a systematic literature review (SR) of the nPD to answer the following review questions: A. Is the nasal potential difference similarly affected in CF patients and animal models?", and B. "Is the nPD in human patients and animal models of CF similarly affected by various changes in the experimental set-up?". The review protocol was preregistered on PROSPERO (CRD42021236047). We searched PubMed and Embase with comprehensive search strings. Two independent reviewers screened all references for inclusion and extracted all data. Included were studies about CF which described in vivo nPD measurements in separate CF and control groups. Risk of bias was assessed, and three meta-analyses were performed. We included 130 references describing nPD values for CF and control subjects, which confirmed substantial variation in the experimental design and nPD outcome between groups. The meta-analyses showed a clear difference in baseline nPD values between CF and control subjects, both in animals and in humans. However, baseline nPD values were, on average, lower in animal than in human studies. Reporting of experimental details was poor for both animal and human studies, and urgently needs to improve to ensure reproducibility of experiments within and between species.


Assuntos
Fibrose Cística , Fibrose Cística/fisiopatologia , Humanos , Animais , Modelos Animais de Doenças
2.
Diagnostics (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835841

RESUMO

To address unmet treatment needs in cystic fibrosis (CF), preclinical and clinical studies are warranted. Because it directly reflects the function of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR), the nasal potential difference test (nPD) can not only be used as a reliable diagnostic test for CF but also to assess efficacy of experimental treatments. We performed a full comprehensive systematic review of the effect of CF treatments on the nPD compared to control conditions tested in separate groups of animal and human subjects. Our review followed a preregistered protocol. We included 34 references: 20 describing mouse studies, 12 describing human studies, and 2 describing both. We provide a comprehensive list of these studies, which assessed the effects of antibiotics, bone marrow transplant, CFTR protein, CFTR RNA, directly and indirectly CFTR-targeting drugs, non-viral and viral gene transfer, and other treatments. Our results support the nPD representing a reliable method for testing treatment effects in both animal models and human patients, as well as for diagnosing CF. However, we also observed the need for improved reporting to ensure reproducibility of the experiments and quantitative comparability of the results within and between species (e.g., with meta-analyses). Currently, data gaps warrant further primary studies.

3.
Front Aging Neurosci ; 14: 876826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572151

RESUMO

A causal contribution of hyperhomocysteinemia to cognitive decline and Alzheimer's disease (AD), as well as potential prevention or mitigation of the pathology by dietary intervention, have frequently been subjects of controversy. In the present in vivo study, we attempted to further elucidate the impact of elevated homocysteine (HCys) and homocysteic acid (HCA) levels, induced by dietary B-vitamin deficiency, and micronutrient supplementation on AD-like pathology, which was simulated using the amyloid-based AppNL-G-F knock-in mouse model. For this purpose, cognitive assessment was complemented by analyses of ex vivo parameters in whole blood, serum, CSF, and brain tissues from the mice. Furthermore, neurotoxicity of HCys and HCA was assessed in a separate in vitro assay. In confirmation of our previous study, older AppNL-G-F mice also exhibited subtle phenotypic impairment and extensive cerebral amyloidosis, whereas dietary manipulations did not result in significant effects. As revealed by proximity extension assay-based proteome analysis, the AppNL-G-F genotype led to an upregulation of AD-characteristic neuronal markers. Hyperhomocysteinemia, in contrast, indicated mainly vascular effects. Overall, since there was an absence of a distinct phenotype despite both a significant amyloid-ß burden and serum HCys elevation, the results in this study did not corroborate the pathological role of amyloid-ß according to the "amyloid hypothesis," nor of hyperhomocysteinemia on cognitive performance. Nevertheless, this study aided in further characterizing the AppNL-G-F model and in elucidating the role of HCys in diverse biological processes. The idea of AD prevention with the investigated micronutrients, however, was not supported, at least in this mouse model of the disease.

4.
Biomolecules ; 11(10)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680179

RESUMO

Disturbances in the one-carbon metabolism are often indicated by altered levels of the endogenous amino acid homocysteine (HCys), which is additionally discussed to causally contribute to diverse pathologies. In the first part of the present review, we profoundly and critically discuss the metabolic role and pathomechanisms of HCys, as well as its potential impact on different human disorders. The use of adequate animal models can aid in unravelling the complex pathological processes underlying the role of hyperhomocysteinemia (HHCys). Therefore, in the second part, we systematically searched PubMed/Medline for animal studies regarding HHCys and focused on the potential impact on cognitive performance and decline. The majority of reviewed studies reported a significant effect of HHCys on the investigated behavioral outcomes. Despite of persistent controversial discussions about equivocal findings, especially in clinical studies, the present evaluation of preclinical evidence indicates a causal link between HHCys and cognition-related- especially dementia-like disorders, and points out the further urge for large-scale, well-designed clinical studies in order to elucidate the normalization of HCys levels as a potential preventative or therapeutic approach in human pathologies.


Assuntos
Disfunção Cognitiva/fisiopatologia , Homocisteína/metabolismo , Hiper-Homocisteinemia/fisiopatologia , Transferases de Grupo de Um Carbono/metabolismo , Animais , Cognição/fisiologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/epidemiologia , Humanos , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/epidemiologia , Transferases de Grupo de Um Carbono/genética
5.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477684

RESUMO

Hyperhomocysteinemia has been suggested potentially to contribute to a variety of pathologies, such as Alzheimer's disease (AD). While the impact of hyperhomocysteinemia on AD has been investigated extensively, there are scarce data on the effect of AD on hyperhomocysteinemia. The aim of this in vivo study was to investigate the kinetics of homocysteine (HCys) and homocysteic acid (HCA) and effects of AD-like pathology on the endogenous levels. The mice received a B-vitamin deficient diet for eight weeks, followed by the return to a balanced control diet for another eight weeks. Serum, urine, and brain tissues of AppNL-G-F knock-in and C57BL/6J wild type mice were analyzed for HCys and HCA using LC-MS/MS methods. Hyperhomocysteinemic levels were found in wild type and knock-in mice due to the consumption of the deficient diet for eight weeks, followed by a rapid normalization of the levels after the return to control chow. Hyperhomocysteinemic AppNL-G-F mice had significantly higher HCys in all matrices, but not HCA, compared to wild type control. Higher serum concentrations were associated with elevated levels in both the brain and in urine. Our findings confirm a significant impact of AD-like pathology on hyperhomocysteinemia in the AppNL-G-F mouse model. The immediate normalization of HCys and HCA after the supply of B-vitamins strengthens the idea of a B-vitamin intervention as a potentially preventive treatment option for HCys-related disorders such as AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Homocisteína/análogos & derivados , Homocisteína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Cromatografia Líquida , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Espectrometria de Massas em Tandem
6.
Nutrients ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114054

RESUMO

BACKGROUND: Hyperhomocysteinemia is considered a possible contributor to the complex pathology of Alzheimer's disease (AD). For years, researchers in this field have discussed the apparent detrimental effects of the endogenous amino acid homocysteine in the brain. In this study, the roles of hyperhomocysteinemia driven by vitamin B deficiency, as well as potentially beneficial dietary interventions, were investigated in the novel AppNL-G-F knock-in mouse model for AD, simulating an early stage of the disease. METHODS: Urine and serum samples were analyzed using a validated LC-MS/MS method and the impact of different experimental diets on cognitive performance was studied in a comprehensive behavioral test battery. Finally, we analyzed brain samples immunohistochemically in order to assess amyloid-ß (Aß) plaque deposition. RESULTS: Behavioral testing data indicated subtle cognitive deficits in AppNL-G-F compared to C57BL/6J wild type mice. Elevation of homocysteine and homocysteic acid, as well as counteracting dietary interventions, mostly did not result in significant effects on learning and memory performance, nor in a modified Aß plaque deposition in 35-week-old AppNL-G-F mice. CONCLUSION: Despite prominent Aß plaque deposition, the AppNL-G-F model merely displays a very mild AD-like phenotype at the investigated age. Older AppNL-G-F mice should be tested in order to further investigate potential effects of hyperhomocysteinemia and dietary interventions.


Assuntos
Doença de Alzheimer/etiologia , Cognição , Dieta/métodos , Hiper-Homocisteinemia/dietoterapia , Hiper-Homocisteinemia/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal , Disfunção Cognitiva/etiologia , Dieta/efeitos adversos , Modelos Animais de Doenças , Homocisteína/análogos & derivados , Homocisteína/sangue , Homocisteína/urina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/etiologia , Placa Amiloide/psicologia , Deficiência de Vitaminas do Complexo B/dietoterapia , Deficiência de Vitaminas do Complexo B/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...