Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1292158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333213

RESUMO

Due to the intracellular expression of Foxp3 it is impossible to purify viable Foxp3+ cells on the basis of Foxp3 staining. Consequently CD4+Foxp3+ regulatory T cells (Tregs) in mice have mostly been characterized using CD4+CD25+ T cells or GFP-Foxp3 reporter T cells. However, these two populations cannot faithfully represent Tregs as the expression of CD25 and Foxp3 does not completely overlap and GFP+Foxp3+ reporter T cells have been reported to be functionally altered. The aim of this study was to characterize normal Tregs without separating Foxp3+ and Foxp3- cells for the expression of the main functional molecules and proliferation behaviors by flow cytometry and to examine their gene expression characteristics through differential gene expression. Our data showed that the expressions of Foxp3, CD25, CTLA-4 (both intracellular and cell surface) and PD-1 was mostly confined to CD4+ T cells and the expression of Foxp3 did not completely overlap with the expression of CD25, CTLA-4 or PD-1. Despite higher levels of expression of the T cell inhibitory molecules CTLA-4 and PD-1, Tregs maintained higher levels of Ki-67 expression in the homeostatic state and had greater proliferation in vivo after allo-activation than Tconv. Differential gene expression analysis revealed that resting Tregs exhibited immune activation markers characteristic of activated Tconv. This is consistent with the flow data that the T cell activation markers CD25, CTLA-4, PD-1, and Ki-67 were much more strongly expressed by Tregs than Tconv in the homeostatic state.


Assuntos
Fatores de Transcrição Forkhead , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Animais , Camundongos , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Antígeno Ki-67/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
2.
Ann Allergy Asthma Immunol ; 129(2): 150-159, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35487388

RESUMO

T2-low asthma is an often severe asthma subtype with limited treatment options and biologic therapeutics are lacking. Several monoclonal antibodies (mAbs) targeting non-T2 cytokines were previously reported to be ineffective in asthma. These trials often investigated heterogeneous asthma populations and negative outcomes could be related to unsuitable study cohorts. More tailored approaches in selecting participants based on specific biomarkers have been beneficial in treating severe T2-high asthma. Similarly, mAbs previously deemed ineffective bear the potential to be useful when administered to the correct target population. Here, we review individual clinical trials conducted between 2005 and 2021 and assess the suitability of the selected cohorts, whether study end points were met, and whether outcome measures were appropriate to investigate the effectiveness of the respective drug. We discuss potential target groups within the T2-low asthma population and suggest biomarkers that may predict a treatment response. Furthermore, we assess whether biomarker-guided approaches or subgroup analyses were associated with more positive study outcomes. The mAbs directed against alarmins intervene early in the inflammatory cascade and are the first mAbs found to have efficacy in T2-low asthma. Several randomized controlled trials performed predefined subgroup analyses that included T2-low asthma. Subgroup analyses were associated with positive outcomes and were able to reveal a stronger response in at least 1 subgroup. A better understanding of T2-low subgroups and specific biomarkers is necessary to identify the most responsive target population for a given mAb.


Assuntos
Antiasmáticos , Asma , Antiasmáticos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Terapia Biológica , Biomarcadores/análise , Humanos
3.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34291112

RESUMO

BACKGROUND: Dysregulation of tumour necrosis factor-α (TNF-α) signalling is implicated in neutrophilic asthma. TNF-α signalling involves membrane-bound and soluble ligand (TNF-α) and receptors (TNFRs); however, little is known about how these proteins are altered in asthma. We hypothesised that intercompartment-, immune cell- and/or asthma inflammatory phenotype-dependent regulation could relate to TNF dysregulation in neutrophilic asthma. METHODS: Measurements were made in 45 adults with asthma (36 non-neutrophilic, 9 neutrophilic) and 8 non-asthma controls. Soluble TNF-α, TNF receptor 1 (TNFR1) and TNFR2 were quantified in plasma and sputum supernatant by ELISA, and membrane-bound TNF-α/TNFR1/TNFR2 measured on eosinophils, neutrophils, monocytes, and macrophages in blood and sputum by flow cytometry. Marker expression was compared between inflammatory phenotypes and compartments, and relationship of membrane-bound and soluble TNF markers and immune cell numbers tested by correlation. RESULTS: Soluble sputum TNFR1 and TNFR2 were increased in neutrophilic versus non-neutrophilic asthma (p=0.010 and p=0.029). Membrane-bound TNF-α expression was upregulated on sputum versus blood monocytes, while TNFR1 and TNFR2 levels were reduced on airway versus blood monocytes and neutrophils. Soluble TNFR1 and TNFR2 in sputum significantly correlated with the number of airway monocytes (p=0.016, r=0.358 and p=0.029, r=0.327). CONCLUSION: Our results imply that increased sputum soluble TNF receptor levels observed in neutrophilic asthma relate to the increased recruitment of monocytes and neutrophils into the airways and their subsequent receptor shedding. Monocytes also increase TNF-α ligand expression in the airways. These results suggest an important contribution of airway monocytes to the altered inflammatory milieu in neutrophilic asthma.

4.
Allergy ; 76(7): 2090-2101, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33569770

RESUMO

BACKGROUND: The AMAZES randomized controlled trial demonstrated that long-term low-dose azithromycin treatment reduces exacerbations of poorly controlled asthma, but the therapeutic mechanisms remain unclear. Dysregulation of the inflammatory tumour necrosis factor (TNF) pathway is implicated in asthma and could be suppressed by azithromycin. We aimed to determine the inflammatory and clinical associations of soluble TNF signalling proteins (TNF receptors [TNFR] 1 and 2, TNF) in sputum and serum, and to test the effect of 48 weeks of azithromycin vs placebo on TNF markers. METHODS: Sputum supernatant and serum TNFR1, TNFR2 (n = 142; 75 azithromycin-treated, 67 placebo-treated) and TNF (n = 48; 22 azithromycin-treated, 26 placebo-treated) were measured by ELISA in an AMAZES trial sub-population at baseline and end of treatment. Baseline levels were compared between sputum inflammatory phenotypes, severe/non-severe asthma and frequent/non-frequent exacerbators. Effect of azithromycin on markers was tested using linear mixed models. RESULTS: Baseline sputum TNFR1 and TNFR2 were significantly increased in neutrophilic vs non-neutrophilic asthma phenotypes, while serum markers did not differ. Sputum TNFR1 and TNFR2 were increased in severe asthma and correlated with poorer lung function, worse asthma control and increasing age. Serum TNFR1 was also increased in severe asthma. Sputum and serum TNFR2 were increased in frequent exacerbators. Azithromycin treatment significantly reduced sputum TNFR2 and TNF relative to placebo, specifically in non-eosinophilic participants. CONCLUSIONS: We demonstrate dysregulation of TNF markers, particularly in the airways, that relates to clinically important phenotypes of asthma including neutrophilic and severe asthma. Suppression of dysregulated TNF signalling by azithromycin could contribute to its therapeutic mechanism.


Assuntos
Asma , Azitromicina , Antibacterianos/uso terapêutico , Asma/diagnóstico , Asma/tratamento farmacológico , Azitromicina/uso terapêutico , Biomarcadores , Humanos , Escarro , Fator de Necrose Tumoral alfa
5.
Clin Exp Allergy ; 51(2): 305-317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33301598

RESUMO

BACKGROUND: Monocytes and macrophages are critical innate immune cells of the airways. Despite their differing functions, few clinical studies discriminate between them and little is known about their regulation in asthma. OBJECTIVE: We aimed to distinguish and quantify macrophages, monocytes and monocyte subsets in induced sputum and blood and examine their relationship with inflammatory and clinical features of asthma. METHODS: We applied flow cytometry to distinguish macrophages, monocytes and subsets in sputum and blood (n = 53; 45 asthma, 8 non-asthma) and a second asthma sputum cohort (n = 26). Monocyte subsets were identified by surface CD14/CD16 (CD14++ CD16- classical, CD14+ CD16+ intermediate and CD14+ CD16++ non-classical monocytes). Surface CD206, a marker of monocyte tissue differentiation, was measured in sputum. Relationship to airway inflammatory phenotype (neutrophilic n = 9, eosinophilic n = 14, paucigranulocytic n = 22) and asthma severity (severe n = 12, non-severe n = 33) was assessed. RESULTS: Flow cytometry- and microscope-quantified sputum differential cell proportions were significantly correlated. Sputum macrophage number was reduced (p = .036), while classical monocyte proportion was increased in asthma vs non-asthma (p = .032). Sputum classical monocyte number was significantly higher in neutrophilic vs paucigranulocytic asthma (p = .013). CD206- monocyte proportion and number were increased in neutrophilic vs eosinophilic asthma (p < .001, p = .013). Increased sputum classical and CD206- monocyte numbers in neutrophilic asthma were confirmed in the second cohort. Blood monocytes did not vary with airway inflammatory phenotype, but blood classical monocyte proportion and number were increased in severe vs non-severe asthma (p = .022, p = .011). CONCLUSION AND CLINICAL RELEVANCE: Flow cytometry allowed distinction of sputum macrophages, monocytes and subsets, revealing compartment-specific dysregulation of monocytes in asthma. We observed an increase in classical and CD206- monocytes in sputum in neutrophilic asthma, suggesting co-recruitment of monocytes and neutrophils to the airways in asthma. Our data suggest further investigation of how airway monocyte dysregulation impacts on asthma-related disease activity is merited.


Assuntos
Asma/imunologia , Inflamação/imunologia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Adulto , Idoso , Asma/sangue , Estudos de Casos e Controles , Eosinófilos/imunologia , Feminino , Citometria de Fluxo , Humanos , Inflamação/sangue , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Masculino , Receptor de Manose/metabolismo , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/metabolismo , Fenótipo , Receptores de IgG/metabolismo , Índice de Gravidade de Doença , Escarro/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA