Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 882476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692801

RESUMO

The aim of this work is to present a reproducible methodology for the evaluation of total equivalent doses in organs during proton therapy facilities. The methodology is based on measuring the dose equivalent in representative locations inside an anthropomorphic phantom where photon and neutron dosimeters were inserted. The Monte Carlo simulation was needed for obtaining neutron energy distribution inside the phantom. The methodology was implemented for a head irradiation case in the passive proton beam of iThemba Labs (South Africa). Thermoluminescent dosimeter (TLD)-600 and TLD-700 pairs were used as dosimeters inside the phantom and GEANT code for simulations. In addition, Bonner sphere spectrometry was performed inside the treatment room to obtain the neutron spectra, some relevant neutron dosimetric quantities per treatment Gy, and a percentual distribution of neutron fluence and ambient dose equivalent in four energy groups, at two locations. The neutron spectrum at one of those locations was also simulated so that a reasonable agreement between simulation and measurement allowed a validation of the simulation. Results showed that the total out-of-field dose equivalent inside the phantom ranged from 1.4 to 0.28 mSv/Gy, mainly due to the neutron contribution and with a small contribution from photons, 10% on average. The order of magnitude of the equivalent dose in organs was similar, displaying a slow reduction in values as the organ is farther from the target volume. These values were in agreement with those found by other authors in other passive beam facilities under similar irradiation and measurement conditions.

2.
Sci Rep ; 11(1): 20854, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675263

RESUMO

The radiosensitivity of haematopoietic stem and progenitor cells (HSPCs) to neutron radiation remains largely underexplored, notwithstanding their potential role as target cells for radiation-induced leukemogenesis. New insights are required for radiation protection purposes, particularly for aviation, space missions, nuclear accidents and even particle therapy. In this study, HSPCs (CD34+CD38+ cells) were isolated from umbilical cord blood and irradiated with 60Co γ-rays (photons) and high energy p(66)/Be(40) neutrons. At 2 h post-irradiation, a significantly higher number of 1.28 ± 0.12 γ-H2AX foci/cell was observed after 0.5 Gy neutrons compared to 0.84 ± 0.14 foci/cell for photons, but this decreased to similar levels for both radiation qualities after 18 h. However, a significant difference in late apoptosis was observed with Annexin-V+/PI+ assay between photon and neutron irradiation at 18 h, 43.17 ± 6.10% versus 55.55 ± 4.87%, respectively. A significant increase in MN frequency was observed after both 0.5 and 1 Gy neutron irradiation compared to photons illustrating higher levels of neutron-induced cytogenetic damage, while there was no difference in the nuclear division index between both radiation qualities. The results point towards a higher induction of DNA damage after neutron irradiation in HSPCs followed by error-prone DNA repair, which contributes to genomic instability and a higher risk of leukemogenesis.


Assuntos
Dano ao DNA/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Nêutrons/efeitos adversos , Células Cultivadas , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Células-Tronco Hematopoéticas/metabolismo , Humanos , Transferência Linear de Energia , Testes para Micronúcleos
3.
Phys Med ; 90: 176-187, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34688192

RESUMO

In this study, Monte Carlo codes, Geant4 and MCNP6, were used to characterize the fast neutron therapeutic beam produced at iThemba LABS in South Africa. Experimental and simulation results were compared using the latest generation of Silicon on Insulator (SOI) microdosimeters from the Centre for Medical Radiation Physics (CMRP). Geant4 and MCNP6 were able to successfully model the neutron gantry and simulate the expected neutron energy spectrum produced from the reaction by protons bombarding a 9Be target. The neutron beam was simulated in a water phantom and its characteristics recorded by the silicon microdosimeters; bare and covered by a 10B enriched boron carbide converter, at different positions. The microdosimetric quantities calculated using Geant4 and MCNP6 are in agreement with experimental measurements. The thermal neutron sensitivity and production of 10B capture products in the p+ boron-implanted dopant regions of the Bridge microdosimeter is investigated. The obtained results are useful for the future development of dedicated SOI microdosimeters for Boron Neutron Capture Therapy (BNCT). This paper provides a benchmark comparison of Geant4 and MCNP6 capabilities in the context of further applications of these codes for neutron microdosimetry.


Assuntos
Terapia por Captura de Nêutron de Boro , Nêutrons Rápidos , Método de Monte Carlo , Nêutrons , Radiometria , Silício
4.
Biomed Phys Eng Express ; 7(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33540400

RESUMO

Prompt gamma detection during proton radiotherapy for range verification purposes will need to operate in both active and passive treatment beam environments. This paper describes prompt gamma measurements using a high resolution 2″ × 2″ LaBr3detector for a 200 MeV clinical passive-scatter proton beam. These measurements examine the most likely discrete prompt gamma rays emitted from tissue by detecting gammas produced in water, Perspex, carbon and liquid-nitrogen targets. Measurements were carried out at several positions around the depth corresponding to the location of the Bragg peak for water and Perspex targets in order to investigate prompt gamma emission as a function of depth along the beam path. This work also focused on validating the Geant4 Monte Carlo model of the passive-scatter proton beam line and LaBr3detector by making a direct comparison between the simulated and experimental results. The initial prompt gamma measurements were overwhelmed by the high amount of scattered radiation when measuring at isocenter, shifting the target further downstream from the final collimator significantly reduced the background radiation. Prompt gamma peaks were then clearly identified for the water, Perspex and graphite targets. The developed Geant4 Monte Carlo model was able to replicate the measured prompt gamma ray energy spectra, including production for important photopeaks to within 10%, except for the 4.44 MeV peak from the water target, which had more than a 50% overestimation of the number of produced prompt gamma rays. The prompt gamma measurements at various depths correlated well with the proton dose deposition; the 4.44 and 6.13 MeV photopeak profiles peaked within 1 cm of the Bragg peak and the R50%value for the 3-7 MeV energy range predicted the proton range within 8 mm.


Assuntos
Terapia com Prótons , Raios gama , Imagens de Fantasmas , Polimetil Metacrilato , Prótons , Água
5.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661782

RESUMO

The lack of information on how biological systems respond to low-dose and low dose-rate exposures makes it difficult to accurately assess the carcinogenic risks. This is of critical importance to space radiation, which remains a serious concern for long-term manned space exploration. In this study, the γ-H2AX foci assay was used to follow DNA double-strand break (DSB) induction and repair following exposure to neutron irradiation, which is produced as secondary radiation in the space environment. Human lymphocytes were exposed to high dose-rate (HDR: 0.400 Gy/min) and low dose-rate (LDR: 0.015 Gy/min) p(66)/Be(40) neutrons. DNA DSB induction was investigated 30 min post exposure to neutron doses ranging from 0.125 to 2 Gy. Repair kinetics was studied at different time points after a 1 Gy neutron dose. Our results indicated that γ-H2AX foci formation was 40% higher at HDR exposure compared to LDR exposure. The maximum γ-H2AX foci levels decreased gradually to 1.65 ± 0.64 foci/cell (LDR) and 1.29 ± 0.45 (HDR) at 24 h postirradiation, remaining significantly higher than background levels. This illustrates a significant effect of dose rate on neutron-induced DNA damage. While no significant difference was observed in residual DNA damage after 24 h, the DSB repair half-life of LDR exposure was slower than that of HDR exposure. The results give a first indication that the dose rate should be taken into account for cancer risk estimations related to neutrons.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos da radiação , Nêutrons Rápidos , DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Histonas/metabolismo , Histonas/efeitos da radiação , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Masculino , Radiação Ionizante , Fatores de Tempo
6.
Phys Med ; 55: 149-154, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30420271

RESUMO

PURPOSE: Proton CT is widely recognised as a beneficial alternative to conventional X-ray CT for treatment planning in proton beam radiotherapy. A novel proton CT imaging system, based entirely on solid-state detector technology, is presented. Compared to conventional scintillator-based calorimeters, positional sensitive detectors allow for multiple protons to be tracked per read out cycle, leading to a potential reduction in proton CT scan time. Design and characterisation of its components are discussed. An early proton CT image obtained with a fully solid-state imaging system is shown and accuracy (as defined in Section IV) in Relative Stopping Power to water (RSP) quantified. METHOD: A solid-state imaging system for proton CT, based on silicon strip detectors, has been developed by the PRaVDA collaboration. The system comprises a tracking system that infers individual proton trajectories through an imaging phantom, and a Range Telescope (RT) which records the corresponding residual energy (range) for each proton. A back-projection-then-filtering algorithm is used for CT reconstruction of an experimentally acquired proton CT scan. RESULTS: An initial experimental result for proton CT imaging with a fully solid-state system is shown for an imaging phantom, namely a 75 mm diameter PMMA sphere containing tissue substitute inserts, imaged with a passively-scattered 125 MeV beam. Accuracy in RSP is measured to be ⩽1.6% for all the inserts shown. CONCLUSIONS: A fully solid-state imaging system for proton CT has been shown capable of imaging a phantom with protons and successfully improving RSP accuracy. These promising results, together with system the capability to cope with high proton fluences (2×108 protons/s), suggests that this research platform could improve current standards in treatment planning for proton beam radiotherapy.


Assuntos
Prótons , Tomografia Computadorizada por Raios X/instrumentação , Desenho de Equipamento , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA