Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet World ; 16(4): 704-710, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37235146

RESUMO

Background and Aim: Brucellosis, paratuberculosis (PTb), and infections caused by small ruminant lentivirus (SRLV), formerly known as caprine arthritis encephalitis virus (CAEV), adversely affect goat production systems. Nonetheless, commonly used diagnostic tests can only determine one analyte at a time, increasing disease surveillance costs, and limiting their routine use. This study aimed to design and validate a multiplex assay for antibody detection against these three diseases simultaneously. Materials and Methods: Two recombinant proteins from the SRLV (p16 and gp38), the native hapten of Brucella melitensis, and the paratuberculosis-protoplasmic antigen 3 from Mycobacterium avium subsp. paratuberculosis (MAP) were used to devise and assess a multiplex assay. Conditions for the Luminex® multiplex test were established and validated by sensitivity, specificity, repeatability, and reproducibility parameters. Cut-off points for each antigen were also established. Results: The 3-plex assay had high sensitivity (84%) and specificity (95%). The maximum coefficients of variation were 23.8% and 20.5% for negative and positive control samples, respectively. The p16 and gp38 SRLV antigens are 97% and 95%, similar to the CAEV sequence found in GenBank, respectively. Conclusion: The multiplex test can be effectively used for the simultaneous detection of antibodies against SRLV, MAP and B. melitensis in goats.

2.
Tuberculosis (Edinb) ; 114: 123-126, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711151

RESUMO

Tuberculosis is one of the leading causes of mortality worldwide, it is caused by Mycobacterium tuberculosis (Mtb), a bacteria that employs several strategies to evade the host immune response. For instance, Mtb interferes with the overexpression of class II transactivator (CIITA) in macrophages exposed to IFN-γ by inhibiting histone acetylation at its promoter, which can be reverted by the histone deacetylase inhibitor (HDACi) sodium butyrate. In this work, we evaluated whether a different HDACi, valproic acid (VPA), could revert the inhibition of gene expression induced by Mtb. J774 macrophages treated with VPA and IFN-γ unexpectedly induced a higher expression of the inducible nitric oxide synthase and a higher production of nitric oxide when exposed to the 19 kDa lipoprotein of Mtb or the whole bacteria. However, VPA was unable to revert the inhibition of CIITA expression induced by the 19 kDa lipoprotein of Mtb. Finally, macrophages infected with Mtb and treated with VPA and IFN-γ showed a significant reduction in intracellular bacteria. Our findings suggest a new therapeutic potential of VPA for the treatment of tuberculosis.


Assuntos
Interferon gama/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Óxido Nítrico/biossíntese , Ácido Valproico/farmacologia , Animais , Antituberculosos/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética
3.
Immunol Invest ; 43(5): 436-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24654560

RESUMO

Mycobacterium tuberculosis (Mtb) inhibits dendritric cells (DC) function in order to delay T cell response. Furthermore, there is increasing evidence that genetic diversity of Mtb strains can affect their interaction with the immune system. Beijing genotype has attracted attention because of its high prevalence and multi-drug resistance. Although it is known that this genotype is hypervirulent and differentially activates macrophages when compared to other genotypes, little is known about its interaction with DC. In order to address this issue, murine bone marrow derived DC (BMDC) were stimulated with soluble extracts (SE) from BCG, H37Rv, Canetti and Beijing genotypes. We observed that unlike other mycobacteria strains, SE-Beijing was unable to induce maturation of DC as assessed by cell surface MHC-II expression. DC stimulated with SE-Beijing failed to produce IL-12 and TNF-α, but did secrete IL-10. Interestingly, SE-Beijing induced CCR7 and PDL-1 on BMDC, but did not induce the expression of CD86. When BMDC stimulated with SE-Beijing were used to activate CD4+ cells they were unable to induce a Th1 response when compared with less virulent genotypes. These results indicate that Beijing is able to modulate DC activation and function, which may be related to the pathogenesis induced by this genotype.


Assuntos
Células Dendríticas/imunologia , Genótipo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Infect Immun ; 80(2): 594-601, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22124657

RESUMO

The best-studied Helicobacter pylori virulence factor associated with development of peptic ulcer disease or gastric cancer (GC) rather than asymptomatic nonatrophic gastritis (NAG) is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host epithelial cells. Here we used real-time reverse transcription-PCR (RT-PCR) to measure the in vivo expression of genes on the cagPAI and of other virulence genes in patients with NAG, duodenal ulcer (DU), or GC. In vivo expression of H. pylori virulence genes was greater overall in gastric biopsy specimens of patients with GC than in those of patients with NAG or DU. However, since in vitro expression of cagA was not greater in H. pylori strains from patients with GC than in those from patients with NAG or DU, increased expression in GC in vivo is likely a result of environmental conditions in the gastric mucosa, though it may in turn cause more severe pathology. Increased expression of virulence genes in GC may represent a stress response to elevated pH or other environmental conditions in the stomach of patients with GC, which may be less hospitable to H. pylori colonization than the acidic environment in patients with NAG or DU.


Assuntos
Úlcera Duodenal/microbiologia , Gastrite/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Neoplasias Gástricas/microbiologia , Adulto , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mucosa Gástrica/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...