Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 77(7): 1647-1658, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37105950

RESUMO

In haploid species, sexual reproduction by selfing lacks the common benefits from recombination and is indistinguishable from asexual reproduction at the genetic level. Nevertheless, the evolution of self-compatibility, known as homothallism in organisms with mating types, has occurred hundreds of times in fungi. Two main hypotheses have been proposed for the evolution of homothallism. First, that homothallism offers reproductive assurance, which is especially important when species have an obligatory sexual phase in their lifecycle. Second, that homothallism is associated with population-level compatibility, increasing the chance of outbreeding. Here, we test these hypotheses using the fission yeast Schizosaccharomyces pombe, which is homothallic by mating-type switching, leveraging natural variation for switching efficiency in this species. Combining empirical tests with cellular automaton simulations, we show that homothallism by switching increases mating success of switching genotypes, but does not affect population-level compatibility. Experiments show that outcrossing is actually reduced under homothallism. This reduction in outcrossing is explained by our simulations, which show that due to local mating, gametes that mated through intraclonal selfing are no longer available for outcrossing. Our results suggest that the recurrent evolution of haploid self-compatibility is likely driven by selection for mating assurance, not to increase the potential for outcrossing.


Assuntos
Reprodução , Saccharomyces cerevisiae , Reprodução/genética , Fungos/genética , Genótipo
2.
Yeast ; 39(1-2): 83-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967063

RESUMO

Fission yeast is an important model organism in evolutionary genetics and cell biology research. Nevertheless, most research is limited to a single laboratory strain and knowledge of its natural occurrence is limited, which reduces our understanding of its life history and hinders isolation of new strains from nature. Understanding the natural diversity of fission yeast can provide insight into its genetic and phenotypic diversity and the evolutionary processes that shaped these. Here, we aimed to identify candidate natural habitats of fission yeasts by searching through a large collection of publicly available environmental metatranscriptomic datasets. Using a custom pipeline, we processed over 13,000 NCBI SRA accessions, from a wide range of 34 different environmental categories. Overall, we found a very low abundance of putative yeast transcripts, with most fission yeast signatures coming from the categories of 'food' and 'terrestrial arthropods'. Additionally, a signal could be found in a variety of marine and fresh aquatic habitats. Our results do not provide a conclusive answer on the natural habitat of fission yeasts, but our analysis further narrows the range of locations where fission yeasts naturally occur.


Assuntos
Schizosaccharomyces , Saccharomyces cerevisiae , Schizosaccharomyces/genética
3.
ISME J ; 16(5): 1294-1305, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34916613

RESUMO

Comparative and pan-genomic analyses of the endophytic fungus Pezicula neosporulosa (Helotiales, Ascomycota) from needles of the relict fir, Abies beshanzuensis, showed expansions of carbohydrate metabolism and secondary metabolite biosynthetic genes characteristic for unrelated plant-beneficial helotialean, such as dark septate endophytes and ericoid mycorrhizal fungi. The current species within the relatively young Pliocene genus Pezicula are predominantly saprotrophic, while P. neosporulosa lacks such features. To understand the genomic background of this putatively convergent evolution, we performed population analyses of 77 P. neosporulosa isolates. This revealed a mosaic structure of a dozen non-recombining and highly genetically polymorphic subpopulations with a unique mating system structure. We found that one idiomorph of a probably duplicated mat1-2 gene was found in putatively heterothallic isolates, while the other co-occurred with mat1-1 locus suggesting homothallic reproduction for these strains. Moreover, 24 and 81 genes implicated in plant cell-wall degradation and secondary metabolite biosynthesis, respectively, showed signatures of the balancing selection. These findings highlight the evolutionary pattern of the two gene families for allowing the fungus a rapid adaptation towards endophytism and facilitating diverse symbiotic interactions.


Assuntos
Genes Fúngicos Tipo Acasalamento , Genômica , Aclimatação , Endófitos , Reprodução
4.
Nat Ecol Evol ; 5(3): 338-349, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432131

RESUMO

Adaptive divergence is the key evolutionary process generating biodiversity by means of natural selection. Yet, the conditions under which it can arise in the presence of gene flow remain contentious. To address this question, we subjected 132 sexually reproducing fission yeast populations, sourced from two independent genetic backgrounds, to disruptive ecological selection and manipulated the level of migration between environments. Contrary to theoretical expectations, adaptive divergence was most pronounced when migration was either absent (allopatry) or maximal (sympatry), but was much reduced at intermediate rates (parapatry and local mating). This effect was apparent across central life-history components (survival, asexual growth and mating) but differed in magnitude between ancestral genetic backgrounds. The evolution of some fitness components was constrained by pervasive negative correlations (trade-off between asexual growth and mating), while others changed direction under the influence of migration (for example, survival and mating). In allopatry, adaptive divergence was mainly conferred by standing genetic variation and resulted in ecological specialization. In sympatry, divergence was mainly mediated by novel mutations enriched in a subset of genes and was characterized by the repeated emergence of two strategies: an ecological generalist and an asexual growth specialist. Multiple loci showed consistent evidence for antagonistic pleiotropy across migration treatments providing a conceptual link between adaptation and divergence. This evolve-and-resequence experiment shows that rapid ecological differentiation can arise even under high rates of gene flow. It further highlights that adaptive trajectories are governed by complex interactions of gene flow, ancestral variation and genetic correlations.


Assuntos
Fluxo Gênico , Simpatria , Adaptação Fisiológica/genética , Biodiversidade , Seleção Genética
5.
Mol Biol Evol ; 36(9): 1975-1989, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225876

RESUMO

Mutation and recombination are key evolutionary processes governing phenotypic variation and reproductive isolation. We here demonstrate that biodiversity within all globally known strains of Schizosaccharomyces pombe arose through admixture between two divergent ancestral lineages. Initial hybridization was inferred to have occurred ∼20-60 sexual outcrossing generations ago consistent with recent, human-induced migration at the onset of intensified transcontinental trade. Species-wide heritable phenotypic variation was explained near-exclusively by strain-specific arrangements of alternating ancestry components with evidence for transgressive segregation. Reproductive compatibility between strains was likewise predicted by the degree of shared ancestry. To assess the genetic determinants of ancestry block distribution across the genome, we characterized the type, frequency, and position of structural genomic variation using nanopore and single-molecule real-time sequencing. Despite being associated with double-strand break initiation points, over 800 segregating structural variants exerted overall little influence on the introgression landscape or on reproductive compatibility between strains. In contrast, we found strong ancestry disequilibrium consistent with negative epistatic selection shaping genomic ancestry combinations during the course of hybridization. This study provides a detailed, experimentally tractable example that genomes of natural populations are mosaics reflecting different evolutionary histories. Exploiting genome-wide heterogeneity in the history of ancestral recombination and lineage-specific mutations sheds new light on the population history of S. pombe and highlights the importance of hybridization as a creative force in generating biodiversity.


Assuntos
Variação Genética , Hibridização Genética , Schizosaccharomyces/genética , Epistasia Genética , Variação Estrutural do Genoma , Isolamento Reprodutivo , Sequenciamento Completo do Genoma
6.
ISME J ; 13(3): 780-788, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30413765

RESUMO

Trade-offs among traits influencing fitness are predicted by life history theory because resources allocated to one function are unavailable to another. Here we examine the relationship between two such traits, asexual reproduction and growth rate, in the filamentous fungus Neurospora crassa, where shared genetic and physiological factors and a source-sink energetic relationship between growth and reproduction may constrain the evolution of these traits. To test growth-reproduction relationships in this species, we independently selected on mycelial growth rate or asexual spore production in a heterogeneous lab-derived population and evaluated the response of the non-selected traits. Combined with phenotypes for the 20 wild strains used to produce the heterogeneous population and the genome-wide genotypes of 468 strains, these data show that growth and reproduction are highly plastic in N. crassa and do not trade off either among wild strains or after laboratory selection in two environments. Rather, we find no predictable growth-reproduction relationship in the environments tested, indicating an effective absence of genetic constraint between these traits. Our results suggest that growth rate and asexual reproduction may not respond predictably to environmental change and suggest that reliance on a single trait as a proxy for fitness in fungal studies may be inadvisable.


Assuntos
Neurospora crassa/fisiologia , Genótipo , Características de História de Vida , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Fenótipo , Reprodução Assexuada
7.
PLoS One ; 13(12): e0209671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30589876

RESUMO

When many gametes compete to fertilize a limited number of compatible gametes, sexual selection will favour traits that increase competitive success during mating. In animals and plants, sperm and pollen competition have yielded many interesting adaptations for improved mating success. In fungi, similar processes have not been shown directly yet. We test the hypothesis that sexual selection can increase competitive fitness during mating, using experimental evolution in the mushroom-forming fungus Schizophyllum commune (Basidiomycota). Mating in mushroom fungi occurs by donation of nuclei to a mycelium. These fertilizing 'male' nuclei migrate through the receiving 'female' mycelium. In our setup, an evolving population of nuclei was serially mated with a non-evolving female mycelium for 20 sexual generations. From the twelve tested evolved lines, four had increased and one had decreased fitness relative to an unevolved competitor. Even though only two of those five remained significant after correcting for multiple comparisons, for all five lines we found a correlation between the efficiency with which the female mycelium is accessed and fitness, providing additional circumstantial evidence for fitness change in those five lines. In two lines, fitness change was also accompanied by increased spore production. The one line with net reduced competitive fitness had increased spore production, but reduced fertilisation efficiency. We did not find trade-offs between male reproductive success and other fitness components. We compare these findings with examples of sperm and pollen competition and show that many similarities between these systems and nuclear competition in mushrooms exist.


Assuntos
Agaricales/fisiologia , Evolução Biológica , Reprodução , Schizophyllum/fisiologia , Fenômenos Biológicos , Aptidão Genética , Estágios do Ciclo de Vida , Fenótipo
8.
Nat Commun ; 9(1): 1639, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691402

RESUMO

Sexual reproduction in eukaryotes requires the fusion of two compatible gametes of opposite sexes or mating types. To meet the challenge of finding a mating partner with compatible gametes, evolutionary mechanisms such as hermaphroditism and self-fertilization have repeatedly evolved. Here, by combining the insights from comparative genomics, computer simulations and experimental evolution in fission yeast, we shed light on the conditions promoting separate mating types or self-compatibility by mating-type switching. Analogous to multiple independent transitions between switchers and non-switchers in natural populations mediated by structural genomic changes, novel switching genotypes readily evolved under selection in the experimental populations. Detailed fitness measurements accompanied by computer simulations show the benefits and costs of switching during sexual and asexual reproduction, governing the occurrence of both strategies in nature. Our findings illuminate the trade-off between the benefits of reproductive assurance and its fitness costs under benign conditions facilitating the evolution of self-compatibility.


Assuntos
Reprodução , Saccharomyces/genética , Evolução Biológica , Simulação por Computador , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento , Genótipo , Modelos Genéticos , Saccharomyces/crescimento & desenvolvimento , Saccharomyces/fisiologia , Seleção Genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-27619703

RESUMO

Fungi are a diverse group of organisms with a huge variation in reproductive strategy. While almost all species can reproduce sexually, many reproduce asexually most of the time. When sexual reproduction does occur, large variation exists in the amount of in- and out-breeding. While budding yeast is expected to outcross only once every 10 000 generations, other fungi are obligate outcrossers with well-mixed panmictic populations. In this review, we give an overview of the costs and benefits of sexual and asexual reproduction in fungi, and the mechanisms that evolved in fungi to reduce the costs of either mode. The proximate molecular mechanisms potentiating outcrossing and meiosis appear to be present in nearly all fungi, making them of little use for predicting outcrossing rates, but also suggesting the absence of true ancient asexual lineages. We review how population genetic methods can be used to estimate the frequency of sex in fungi and provide empirical data that support a mixed mode of reproduction in many species with rare to frequent sex in between rounds of mitotic reproduction. Finally, we highlight how these estimates might be affected by the fungus-specific mechanisms that evolved to reduce the costs of sexual and asexual reproduction.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.


Assuntos
Evolução Biológica , Fungos/fisiologia , Fungos/genética , Reprodução , Reprodução Assexuada , Sexo
10.
Bioessays ; 38(11): 1141-1149, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650253

RESUMO

Alternative ways to ensure mate compatibility, such as hermaphroditism and the breakdown of self-incompatibility, evolved repeatedly when finding a mating partner is difficult. In a variety of microorganisms where compatibility is determined by mating-types, a highly regulated form of universal compatibility system called mating-type switching has evolved several times. This sophisticated system allows for the genetic adjustment of the mating type during asexual growth, and it most likely evolved for reproductive assurance of immotile species under low densities. In this review, we compare the switching strategy to other universal compatibility systems such as "unisexual mating" and homothallism. We identify the costs of switching, including genome instability, and mechanistic costs, as well as the benefits, mainly the maintenance of important mating-type functions. Given the potential benefits of mating-type switching, we speculate that switching is likely to have evolved many times independently, and may be more common in groups where genetic mating types regulate mate compatibility than assumed so far.


Assuntos
Evolução Biológica , Fungos/genética , Processos de Determinação Sexual , Fungos/fisiologia , Genes Fúngicos Tipo Acasalamento , Instabilidade Genômica
11.
Fungal Genet Biol ; 56: 25-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23644093

RESUMO

Before a mycelium of a mushroom-forming basidiomycete develops mushrooms, the monokaryotic mycelium needs to become fertilized. Although the mechanistic details of mating in mushrooms have been studied thoroughly in laboratory research, very little is known on mating patterns in nature. In this study, we performed fine-scale analyses of three populations of Schizophyllum commune from their natural substrate (i.e. dead beech branches). From the three branches, 24, 12, and 24 fruiting bodies were isolated and for each mushroom, the origins of its nuclei and cytoplasm were reconstructed using DNA markers. Nuclear genotypes were determined using sequencing data and mating types, and mitochondrial haplotypes using SNP markers. From these combined data we reconstructed colonization and mating patterns of the mycelia. On each branch, we found multiple dikaryons (3, 3, and 8, respectively); in two instances one nuclear haplotype was shared between two dikaryons and in two other cases a nuclear haplotype was shared between three dikaryons. Each dikaryon always had a single mitochondrial haplotype. These findings indicate that mating usually is not symmetrical and that a monokaryon is most likely fertilized by a small monokaryon, a spore or a dikaryon. Sharing of nuclear haplotype between different dikaryons resulted either from multiple fertilizations of a single monokaryon, if the dikaryons had identical mitochondrial haplotypes, or, if the dikaryons had different mitochondrial haplotypes, most likely from secondary matings between a monokaryon and a dikaryon (Buller phenomenon). We conclude that mating in S. commune between same-sized monokaryons with reciprocal migration, as generally described in textbooks, is rare in nature. We discuss the implications of non-symmetric mating for basidiomycete evolution.


Assuntos
Cruzamentos Genéticos , Genes Fúngicos Tipo Acasalamento , Schizophyllum/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Fagus/microbiologia , Marcadores Genéticos , Genótipo , Haplótipos , Dados de Sequência Molecular , Micélio/genética , Schizophyllum/classificação , Análise de Sequência de DNA
12.
Fungal Biol ; 117(4): 261-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23622720

RESUMO

Basidiomycete fungi perform fertilizations by incorporation of nuclei into a monokaryotic mycelium to establish a dikaryon. The dikaryon cannot incorporate another type of nucleus, but can still act as a nucleus donor in a dikaryon-monokaryon (di-mon) mating, known as the Buller phenomenon. Previously, it has been observed that: (1) in a particular di-mon mating, one of the nuclear types of the dikaryon generally performs better as a donor than the other, and (2) when nuclei from a dikaryon are separated to form monokaryons again (dedikaryotisation), recovery of monokaryons of the two nuclear types is usually unequal. In this study, we investigated if these two observations of asymmetry are functionally related. We tested this hypothesis by performing both di-mon matings and dedikaryotisation of dikaryons derived from five different monokaryons. When a single mechanism controls both processes, the nucleus better at fertilizing a monokaryon in a Buller pairing should also be recovered upon dedikaryotisation with a higher frequency. The results showed a hierarchical structure for recovery among nuclei in dedikaryotisation, but this hierarchy did not correspond to the fertilization success during di-mon mating. These findings thus show that the mechanism causing asymmetric regeneration of nuclei, is most likely not the same as the mechanism responsible for increased chance of fertilization in di-mon matings. We discuss the complexity of the interactions that occur during di-mon matings with regards to the mating type loci.


Assuntos
Divisão Celular , Núcleo Celular/fisiologia , Fungos/fisiologia , Núcleo Celular/genética , Cruzamentos Genéticos , Fungos/citologia , Fungos/genética , Recombinação Genética
13.
Proc Biol Sci ; 278(1702): 152-7, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20630884

RESUMO

We expect that sexual selection may play an important role in the evolution of mushroom-forming basidiomycete fungi. Although these fungi do not have separate sexes, they do play female and male roles: the acceptance and the donation of a nucleus, respectively. The primary mycelium (monokaryon) of basidiomycete fungi, growing from a germinating sexual spore, is hermaphroditic, but it loses female function upon the acceptance of a second nucleus. The resulting dikaryon with two different nuclei in each cell retains a male potential as both nuclei can fertilize receptive mycelia. We tested the occurrence of sexual selection in the model species of mushroom-forming basidiomycetes, Schizophyllum commune, by pairing monokaryons with fully compatible dikaryons. In most pairings, we found a strong bias for one of the two nuclei although both were compatible with the monokaryon when paired alone. This shows that sexual selection can occur in mushroom-forming basidiomycetes. Since the winning nucleus of a dikaryon occasionally varied depending on the receiving monokaryon, we infer that sexual selection can operate through choosiness of the receiving individual (analogous to female choice). However, in other cases the same nucleus won, irrespective of the receiving monokaryon, suggesting that competition between the two nuclei of the donating mycelium (analogous to male-male competition) might also play a role.


Assuntos
Basidiomycota/fisiologia , Evolução Biológica , Núcleo Celular/fisiologia , Fertilização/fisiologia , Seleção Genética/fisiologia , Basidiomycota/genética , Reprodução/fisiologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...