Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Genet ; 69(1): 55-65, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36447017

RESUMO

Fungal and plant mitochondria are known to exchange DNA with retroviral plasmids. Transfer of plasmid DNA to the organellar genome is best known and occurs through wholesale insertion of the plasmid. Less well known is the transfer of organellar DNA to plasmids, in particular tRNA genes. Presently, it is unknown whether fungal plasmids can adopt mitochondrial functions such as tRNA production through horizontal gene transfer. In this paper, we studied the exchange of DNA between fungal linear plasmids and fungal mtDNA, mainly focusing on the basidiomycete family Lyophyllaceae. We report at least six independent transfers of complete tRNA genes to fungal plasmids. Furthermore, we discovered two independent cases of loss of a tRNA gene from a fungal mitochondrial genome following transfer of such a gene to a linear mitochondrial plasmid. We propose that loss of a tRNA gene from mtDNA following its transfer to a plasmid creates a mutualistic dependency of the host mtDNA on the plasmid. We also find that tRNA genes transferred to plasmids encode codons that occur at the lowest frequency in the host mitochondrial genomes, possibly due to a higher number of unused transcripts. We discuss the potential consequences of mtDNA transfer to plasmids for both the host mtDNA and the plasmid.


Assuntos
DNA Mitocondrial , Mitocôndrias , DNA Mitocondrial/genética , DNA Fúngico/genética , Mitocôndrias/genética , Plasmídeos/genética , RNA de Transferência/genética , Transferência Genética Horizontal
2.
Curr Biol ; 31(19): 4413-4421.e5, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403645

RESUMO

The ancestor of termites relied on gut symbionts for degradation of plant material, an association that persists in all termite families.1,2 However, the single-lineage Macrotermitinae has additionally acquired a fungal symbiont that complements digestion of food outside the termite gut.3 Phylogenetic analysis has shown that fungi grown by these termites form a clade-the genus Termitomyces-but the events leading toward domestication remain unclear.4 To address this, we reconstructed the lifestyle of the common ancestor of Termitomyces using a combination of ecological data with a phylogenomic analysis of 21 related non-domesticated species and 25 species of Termitomyces. We show that the closely related genera Blastosporella and Arthromyces also contain insect-associated species. Furthermore, the genus Arthromyces produces asexual spores on the mycelium, which may facilitate insect dispersal when growing on aggregated subterranean fecal pellets of a plant-feeding insect. The sister-group relationship between Arthromyces and Termitomyces implies that insect association and asexual sporulation, present in both genera, preceded the domestication of Termitomyces and did not follow domestication as has been proposed previously. Specialization of the common ancestor of these two genera on an insect-fecal substrate is further supported by similar carbohydrate-degrading profiles between Arthromyces and Termitomyces. We describe a set of traits that may have predisposed the ancestor of Termitomyces toward domestication, with each trait found scattered in related taxa outside of the termite-domesticated clade. This pattern indicates that the origin of the termite-fungus symbiosis may not have required large-scale changes of the fungal partner.


Assuntos
Agaricales , Isópteros , Termitomyces , Animais , Humanos , Isópteros/microbiologia , Estilo de Vida , Filogenia , Simbiose , Termitomyces/genética
3.
Genome Biol Evol ; 11(7): 1857-1869, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31209489

RESUMO

Mitochondria retain their own genome, a hallmark of their bacterial ancestry. Mitochondrial genomes (mtDNA) are highly diverse in size, shape, and structure, despite their conserved function across most eukaryotes. Exploring extreme cases of mtDNA architecture can yield important information on fundamental aspects of genome biology. We discovered that the mitochondrial genomes of a basidiomycete fungus (Termitomyces spp.) contain an inverted repeat (IR), a duplicated region half the size of the complete genome. In addition, we found an abundance of sequences capable of forming G-quadruplexes (G4DNA); structures that can disrupt the double helical formation of DNA. G4DNA is implicated in replication fork stalling, double-stranded breaks, altered gene expression, recombination, and other effects. To determine whether this occurrence of IR and G4DNA was correlated within the genus Termitomyces, we reconstructed the mitochondrial genomes of 11 additional species including representatives of several closely related genera. We show that the mtDNA of all sampled species of Termitomyces and its sister group, represented by the species Tephrocybe rancida and Blastosporella zonata, are characterized by a large IR and enrichment of G4DNA. To determine whether high mitochondrial G4DNA content is common in fungi, we conducted the first broad survey of G4DNA content in fungal mtDNA, revealing it to be a highly variable trait. The results of this study provide important direction for future research on the function and evolution of G4DNA and organellar IRs.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Termitomyces/genética , Quadruplex G , Sequências Repetidas Invertidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA