Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 138: 125-139, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875455

RESUMO

Lithium-ion batteries (LIBs) show high energy densities and are therefore used in a wide range of applications: from portable electronics to stationary energy storage systems and traction batteries used for e-mobility. Considering the projected increase in global demand for this energy storage technology, driven primarily by growth in e-vehicles, and looking at the criticality of some raw materials used in LIBs, the need for an efficient recycling strategy emerges. In this study, current state-of-the-art technologies for LIB recycling are reviewed and future opportunities and challenges, in particular to recover critical raw materials such as lithium or cobalt, are derived. Special attention is paid to the interrelationships between mechanical or thermal pre-treatment and hydro- or pyrometallurgical post-treatment processes. Thus, the unique approach of the article is to link processes beyond individual stages within the recycling chain. It was shown that influencing the physicochemical properties of intermediate products can lead to reduced recycling rates or even the exclusion of certain process options at the end of the recycling chain. More efforts are needed to improve information and data sharing on the exact composition of feedstock for recycling as well as on the processing history of intermediates to enable closed loop LIB recycling. The technical understanding of the interrelationships between different process combinations, such as pyrolytic or mechanical pre-treatment for LIB deactivation and metal separation, respectively, followed by hydrometallurgical treatment, is of crucial importance to increase recovery rates of cathodic metals such as cobalt, nickel, and lithium, but also of other battery components.


Assuntos
Fontes de Energia Elétrica , Lítio , Íons , Metais , Reciclagem
2.
Waste Manag Res ; 39(9): 1193-1199, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33843368

RESUMO

The increased utilisation of lithium-ion batteries in the last years does not come without cost. Due to thermal runaway and exothermic degradation reactions, portable batteries pose enormous risks to waste management systems and infrastructure in their end-of-life phase. All over Europe, the number of waste fires caused by lithium-ion batteries are rising. The risk of a battery fire is mainly influenced by the probability and severity of a thermal runaway or exothermic degradation, which depends on the current state of charge (SOC) of the respective battery. In order to determine the distribution of the SOC which is one of the main influence factors to waste fires caused by lithium-ion batteries, 980 waste battery cells were representatively sampled, manually dismantled and analysed using a prototypic laboratory test stand. Approximately 24% of the analysed cells and batteries had a residual SOC of at least 25%, and approximately 12% had a residual SOC of at least 50%. Hence, approximately every fourth to eighth portable battery threatens to cause a waste fire when critically damaged. Furthermore, a distinct relationship between the actual cell voltage and the residual SOC was found for end-of-life portable batteries.


Assuntos
Incêndios , Lítio , Áustria , Fontes de Energia Elétrica , Íons
3.
Waste Manag Res ; 38(6): 649-659, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32471340

RESUMO

Although separate collection systems for portable batteries (PBs) have been installed years ago, high amounts of batteries still do not enter the collection systems of the member states of the European Union (EU). In Austria, the collection rate has recently dropped to the EU target value of 45%. For the purposes of this study, a comprehensive survey was conducted to identify the destinations of the other end-of-life batteries. A literature survey and an assessment of different waste streams (WSs) were followed by sampling and sorting campaigns for highly relevant WSs (residual waste, lightweight packaging waste, metal packaging waste, and small waste electrical and electronic equipment). The results underwent material flow analysis, showing that more than 800 metric tonnes of portable batteries are misplaced into non-battery-specific collection systems, 718 metric tonnes of them entering residual waste collection. Considerable amounts of batteries are stockpiled, stored or hoarded in Austrian households. Lithium-based batteries, representing a serious risk of fire to the waste industry and making up for 30% of the marketed amount, are still scarcely arriving in waste management systems.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , Áustria , Fontes de Energia Elétrica , Lítio , Reciclagem
4.
J Vis Exp ; (129)2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29155770

RESUMO

A novel electrochemical cell based on a CaF2 solid-state electrolyte has been developed to measure the electromotive force (emf) of binary alkaline earth-liquid metal alloys as functions of both composition and temperature in order to acquire thermodynamic data. The cell consists of a chemically stable solid-state CaF2-AF2 electrolyte (where A is the alkaline-earth element such as Ca, Sr, or Ba), with binary A-B alloy (where B is the liquid metal such as Bi or Sb) working electrodes, and a pure A metal reference electrode. Emf data are collected over a temperature range of 723 K to 1,123 K in 25 K increments for multiple alloy compositions per experiment and the results are analyzed to yield activity values, phase transition temperatures, and partial molar entropies/enthalpies for each composition.


Assuntos
Ligas/química , Eletroquímica/métodos , Metais Alcalinoterrosos/química , Termodinâmica , Ligas/análise , Metais Alcalinoterrosos/análise
5.
Preslia ; 81(3): 309-319, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22318659

RESUMO

In order to uncover patterns and processes of segregation of co-existing cytotypes, we investigated a zone in the eastern Alps (Austria) where diploid and hexaploid individuals of the alpine herb Senecio carniolicus Willd. (Asteraceae) co-occur. Linking the fine-scale distribution of cytotypes to environmental and spatial factors revealed segregation along an ecological gradient, which was also reflected in the cytotype-associated plant assemblages. Compared to diploids, hexaploids are found in more species-rich and denser communities. This may be due to their better competitive ability and lower tolerance of abiotic stress compared to the diploids. The lack of any intermediate cytotypes suggests the presence of strong reproductive isolation mechanisms, whose nature is, however, elusive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA