Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-517073

RESUMO

Humans display vast clinical variability upon SARS-CoV-2 infection1-3, partly due to genetic and immunological factors4. However, the magnitude of population differences in immune responses to SARS-CoV-2 and the mechanisms underlying such variation remain unknown. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells from 222 healthy donors of various ancestries stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces a weaker, but more heterogeneous interferon-stimulated gene activity than influenza A virus, and a unique pro-inflammatory signature in myeloid cells. We observe marked population differences in transcriptional responses to viral exposure that reflect environmentally induced cellular heterogeneity, as illustrated by higher rates of cytomegalovirus infection, affecting lymphoid cells, in African-descent individuals. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell proportions on population differences in immune responses, with genetic variants having a narrower but stronger effect on specific loci. Additionally, natural selection has increased immune response differentiation across populations, particularly for variants associated with SARS-CoV-2 responses in East Asians. We document the cellular and molecular mechanisms through which Neanderthal introgression has altered immune functions, such as its impact on the myeloid response in Europeans. Finally, colocalization analyses reveal an overlap between the genetic architecture of immune responses to SARS-CoV-2 and COVID-19 severity. Collectively, these findings suggest that adaptive evolution targeting immunity has also contributed to current disparities in COVID-19 risk.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-465080

RESUMO

Among immune cells, activated monocytes play a detrimental role in chronic and viral-induced inflammatory pathologies. The uncontrolled activation of monocytes and the subsequent excessive production of inflammatory factors damage bone-cartilage joints in Juvenile Idiopathic Arthritis (JIA), a childhood rheumatoid arthritis (RA) disease. Inflammatory monocytes also exert a critical role in the cytokine storm induced by SARS-CoV2 infection in severe COVID-19 patients. The moderate beneficial effect of current therapies and clinical trials highlights the need of alternative strategies targeting monocytes to treat RA and COVID-19 pathologies. Here, we show that targeting CXCR4 with small amino compound such as the histamine analogue clobenpropit (CB) inhibits spontaneous and induced-production of a set of key inflammatory cytokines by monocytes isolated from blood and synovial fluids of JIA patients. Moreover, daily intraperitoneal CB treatment of arthritic mice results in significant decrease in circulating inflammatory cytokine levels, immune cell infiltrates, joints erosion, and bone resorption leading to reduction of disease progression. Finally, we provide the prime evidence that the exposure of whole blood from hospitalized COVID-19 patients to CB significantly reduces levels of key cytokine-storm-associated factors including TNF-, IL-6 and IL-1{beta}. These overall data show that targeting CXCR4 with CB-like molecules may represent a promising therapeutic option for chronic and viral-induced inflammatory diseases.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257393

RESUMO

The mechanisms that allowed for the SARS-CoV-2 B.1.1.7 variant to rapidly outcompete pre-existing variants in many countries remain poorly characterized. Here, we analyzed viral release, anti-SARS-CoV-2 antibodies and cytokine production in a retrospective series of 427 RT-qPCR+ nasopharyngeal swabs collected in COVID-19 patients harbouring either non-B.1.1.7 or B.1.17 variants. We utilized a novel rapid assay, based on S-Fuse-T reporter cells, to quantify infectious SARS-CoV-2. With both non-B.1.1.7 and B.1.1.7 variants, viral titers were highly variable, ranging from 0 to >106 infectious units, and correlated with viral RNA levels. Lateral flow antigenic rapid diagnostic tests (RDTs) were positive in 96% of the samples harbouring infectious virus. About 67 % of individuals carried detectable infectious virus within the first two days after onset of symptoms. This proportion decreased overtime, and viable virus was detected up to 14 days. Samples containing anti-SARS-CoV-2 IgG or IgA did not generally harbour infectious virus. The proportion of individuals displaying viable virus or being RDT-positive was not higher with B.1.1.7 than with non-B.1.1.7 variants. Ct values were slightly but not significantly lower with B.1.1.7. The variant was characterized by a fast decrease of infectivity overtime and a marked release of 17 cytokines (including IFN-{beta}, IP-10, IL-10 and TRAIL). Our results highlight differences between non-B.1.1.7 and B.1.1.7 variants. B.1.1.7 is associated with modified viral decays and cytokine profiles at the nasopharyngeal mucosae during symptomatic infection.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251633

RESUMO

Coordinated local mucosal and systemic immune responses following SARS-CoV-2 infection protect against COVID-19 pathologies or fail leading to severe clinical outcomes. To understand this process, we performed an integrated analysis of SARS-CoV-2 spike-specific antibodies, cytokines, viral load and 16S bacterial communities in paired nasopharyngeal swabs and plasma samples from a cohort of clinically distinct COVID-19 patients during acute infection. Plasma viral load was associated with systemic inflammatory cytokines that were elevated in severe COVID-19, and also with spike-specific neutralizing antibodies. In contrast, nasopharyngeal viral load correlated with SARS-CoV-2 humoral responses but inversely with interferon responses, the latter associating with protective microbial communities. Potential pathogenic microrganisms, often implicated in secondary respiratory infections, were associated with mucosal inflammation and elevated in severe COVID-19. Our results demonstrate distinct tissue compartmentalization of SARS-CoV-2 immune responses and highlight a role for the nasopharyngeal microbiome in regulating local and systemic immunity that determines COVID-19 clinical outcomes.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432486

RESUMO

SARS-CoV-2 infection in children is generally milder than in adults, yet a proportion of cases result in hyperinflammatory conditions often including myocarditis. To better understand these cases, we applied a multi-parametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. The most severe forms of MIS-C (multisystem inflammatory syndrome in children related to SARS-CoV-2), that resulted in myocarditis, were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomic analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis, characterized by sustained NF-{kappa}B activity, TNF- signaling, associated with decreased gene expression of NF-{kappa}B inhibitors. We also found a weak response to type-I and type-II interferons, hyperinflammation and response to oxidative stress related to increased HIF-1 and VEGF signaling. These results provide potential for a better understanding of disease pathophysiology.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-328369

RESUMO

Understanding how SARS-CoV-2 spreads within the respiratory tract is important to define the parameters controlling the severity of COVID-19. We examined the functional and structural consequences of SARS-CoV-2 infection in a reconstituted human bronchial epithelium model. SARS-CoV-2 replication caused a transient decrease in epithelial barrier function and disruption of tight junctions, though viral particle crossing remained limited. Rather, SARS-CoV-2 replication led to a rapid loss of the ciliary layer, characterized at the ultrastructural level by axoneme loss and misorientation of remaining basal bodies. The motile cilia function was compromised, as measured in a mucociliary clearance assay. Epithelial defense mechanisms, including basal cell mobilization and interferon-lambda induction, ramped up only after the initiation of cilia damage. Analysis of SARS-CoV-2 infection in Syrian hamsters further demonstrated the loss of motile cilia in vivo. This study identifies cilia damage as a pathogenic mechanism that could facilitate SARS-CoV-2 spread to the deeper lung parenchyma.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20068015

RESUMO

BackgroundCoronavirus disease 2019 (Covid-19) is a major global threat that has already caused more than 100,000 deaths worldwide. It is characterized by distinct patterns of disease progression implying a diverse host immune response. However, the immunological features and molecular mechanisms involved in Covid-19 severity remain so far poorly known. MethodsWe performed an integrated immune analysis that included in-depth phenotypical profiling of immune cells, whole-blood transcriptomic and cytokine quantification on a cohort of fifty Covid19 patients with a spectrum of disease severity. All patient were tested 8 to 12 days following first symptoms and in absence of anti-inflammatory therapy. ResultsA unique phenotype in severe and critically ill patients was identified. It consists in a profoundly impaired interferon (IFN) type I response characterized by a low interferon production and activity, with consequent downregulation of interferon-stimulated genes. This was associated with a persistent blood virus load and an exacerbated inflammatory response that was partially driven by the transcriptional factor NFB. It was also characterized by increased tumor necrosis factor (TNF)- and interleukin (IL)-6 production and signaling as well as increased innate immune chemokines. ConclusionWe propose that type-I IFN deficiency in the blood is a hallmark of severe Covid-19 and could identify and define a high-risk population. Our study provides a rationale for testing IFN administration combined with adapted anti-inflammatory therapy targeting IL-6 or TNF- in most severe patients. These data also raise concern for utilization of drugs that interfere with the IFN pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA