Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e18013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282116

RESUMO

Bioplastics are emerging as a promising alternative to traditional plastics, driven by the need for more sustainable options. This review article offers an in-depth analysis of the entire life cycle of bioplastics, from raw material cultivation to manufacturing and disposal, with a focus on environmental impacts at each stage. It emphasizes the significance of adopting sustainable agricultural practices and selecting appropriate feedstock to improve environmental outcomes. The review highlights the detrimental effects of unsustainable farming methods, such as pesticide use and deforestation, which can lead to soil erosion, water pollution, habitat destruction, and increased greenhouse gas emissions. To address these challenges, the article advocates for the use of efficient extraction techniques and renewable energy sources, prioritizing environmental considerations throughout the production process. Furthermore, the methods for reducing energy consumption, water usage, and chemical inputs during manufacturing by implementing eco-friendly technologies. It stresses the importance of developing robust disposal systems for biodegradable materials and supports recycling initiatives to minimize the need for new resources. The holistic approach to sustainability, including responsible feedstock cultivation, efficient production practices, and effective end-of-life management. It underscores the need to evaluate the potential of bioplastics to reduce plastic pollution, considering technological advancements, infrastructure development, and increased consumer awareness. Future research should focus on enhancing production sustainability, understanding long-term ecological impacts, and advancing bioplastics technology for better performance and environmental compatibility. This comprehensive analysis of bioplastics' ecological footprint highlights the urgent need for sustainable solutions in plastic production.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Conservação dos Recursos Naturais/métodos , Agricultura/métodos , Plásticos/química , Reciclagem/métodos , Plásticos Biodegradáveis/química , Poluição Ambiental/prevenção & controle
2.
Mol Biol Rep ; 50(11): 9731-9738, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819497

RESUMO

BACKGROUND: Sesuvium portulacastrum is a facultative halophyte capable of thriving in a saline environment. Despite molecular studies conducted to unravel its salt adaptation mechanism, there is a paucity of information on the role of salt-responsive orthologs and microRNAs (miRNAs) in this halophyte. Here, we searched the orthology to identify salt-responsive orthologs and miRNA targets of Sesuvium using the Arabidopsis genome. METHODS: The relative fold change of orthologs, conserved miRNAs, and miRNA targets of Sesuvium was analyzed under 100 mM (LS) and 250 mM NaCl (HS) treatment at 24 h using qRT-PCR. The comparison between the expression of Sesuvium orthologs and Arabidopsis orthologs (Arabidopsis eFP browser database) was used to identify differentially expressed genes. RESULTS: Upon salt treatment, we found that SpCIPK3 (1.95-fold in LS and 2.90-fold in HS) in Sesuvium roots, and SpNHX7 (1.61-fold in LS and 6.39-fold in HS) and, SpSTPK2 (2.54-fold in LS and 7.65-fold in HS) in Sesuvium leaves were upregulated in a salt concentration-specific manner. In Arabidopsis, these genes were either downregulated or did not show significant variation, implicating its significance in the halophytic nature of Sesuvium. Furthermore, miRNAs like miR394a, miR396a, and miR397a exhibited a negative correlation with their targets-Frigida interacting protein 1, Cysteine proteinases superfamily protein, and Putative laccase, respectively under different salt treatments. CONCLUSION: The study revealed that the high salt tolerance in Sesuvium is associated with distinct transcriptional reprogramming, hence, to gain holistic mechanistic insights, global-scale profiling is required.


Assuntos
Aizoaceae , Arabidopsis , MicroRNAs , Tolerância ao Sal/genética , Arabidopsis/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Aizoaceae/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
4.
J Hazard Mater ; 450: 131039, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867909

RESUMO

Natural and anthropogenic causes are continually growing sources of metals in the ecosystem; hence, heavy metal (HM) accumulation has become a primary environmental concern. HM contamination poses a serious threat to plants. A major focus of global research has been to develop cost-effective and proficient phytoremediation technologies to rehabilitate HM-contaminated soil. In this regard, there is a need for insights into the mechanisms associated with the accumulation and tolerance of HMs in plants. It has been recently suggested that plant root architecture has a critical role in the processes that determine sensitivity or tolerance to HMs stress. Several plant species, including those from aquatic habitats, are considered good hyperaccumulators for HM cleanup. Several transporters, such as the ABC transporter family, NRAMP, HMA, and metal tolerance proteins, are involved in the metal acquisition mechanisms. Omics tools have shown that HM stress regulates several genes, stress metabolites or small molecules, microRNAs, and phytohormones to promote tolerance to HM stress and for efficient regulation of metabolic pathways for survival. This review presents a mechanistic view of HM uptake, translocation, and detoxification. Sustainable plant-based solutions may provide essential and economical means of mitigating HM toxicity.


Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Poluentes do Solo/metabolismo , Plantas/metabolismo , Metais Pesados/análise , Biodegradação Ambiental , Solo
5.
Plant Cell Rep ; 41(3): 799-813, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34676458

RESUMO

Climate-change-mediated increase in temperature extremes has become a threat to plant productivity. Heat stress-induced changes in growth pattern, sensitivity to pests, plant phonologies, flowering, shrinkage of maturity period, grain filling, and increased senescence result in significant yield losses. Heat stress triggers multitude of cellular, physiological and molecular responses in plants beginning from the early sensing followed by signal transduction, osmolyte synthesis, antioxidant defense, and heat stress-associated gene expression. Several genes and metabolites involved in heat perception and in the adaptation response have been isolated and characterized in plants. Heat stress responses are also regulated by the heat stress transcription factors (HSFs), miRNAs and transcriptional factors which together form another layer of regulatory circuit. With the availability of functionally validated candidate genes, transgenic approaches have been applied for developing heat-tolerant transgenic maize, tobacco and sweet potato. In this review, we present an account of molecular mechanisms of heat tolerance and discuss the current developments in genetic manipulation for heat tolerant crops for future sustainable agriculture.


Assuntos
Termotolerância , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Termotolerância/genética
6.
3 Biotech ; 9(3): 91, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30800602

RESUMO

Chloride and sodium constitute as the major ions in most saline soils, contributing to salt-induced damage in plants. Research on salt tolerance has mostly concentrated on the sodium toxicity; however, chloride toxicity also needs to be considered to understand the physiological, biochemical, and metabolite changes under individual and additive salts. In this study, we investigated the effect of individual Na+ and/or Cl- ions (equimolar 100 mM NaCl, Na+ and Cl- salts) using in vitro cultures of four soybean genotypes with contrasting salt tolerance. In general, all the treatments significantly induced antioxidant enzymes activities such as catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase, and superoxide dismutase and osmolytes including proline, glycine betaine, and total soluble sugar (TSS). Both individual (Na+, Cl-) and additive (NaCl) stresses induced more pronounced activation of antioxidant enzyme machinery and osmolytes accumulation in the tolerant genotypes (MAUS-47 and Bragg). The sensitive genotypes (Gujosoya-2 and SL-295) showed higher accumulation of Na+ and Cl-, while the tolerant genotypes were found to maintain a low Na+/K+ and high Ca2+ level in combination with enhanced antioxidant defense and osmotic adjustment. Gas chromatography-mass spectrometry (GC-MS)-based metabolomic profiling depicted the association of certain metabolites under individualistic and additive salt effects. The genotype-specific metabolic changes indicated probable involvement of azetidine, 2-furanmethanol, 1,4-dioxin, 3-fluorothiophene, decanoic acid and 2-propenoic acid methyl ester in salt-tolerance mechanism of soybean.

7.
Front Plant Sci ; 9: 777, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971073

RESUMO

Being the native flora of saline soil, halophytes are well studied for their salt tolerance and adaptation mechanism at the physiological, biochemical, molecular and metabolomic levels. However, these saline habitats are getting contaminated due to various anthropogenic activities like urban waste, agricultural runoff, mining, industrial waste that are rich in toxic metals and metalloids. These toxic metals impose detrimental effects on growth and development of most plant species. Halophytes by virtue of their tolerance to salinity also show high tolerance to heavy metals which is attributed to the enhanced root to shoot metal translocation and bioavailability. Halophytes rapidly uptake toxic ions from the root and transport them toward aerial parts by using different transporters which are involved in metal tolerance and homeostasis. A number of defense related physiological and biochemical strategies are known to be crucial for metal detoxification in halophytes however; there is paucity of information on the molecular regulators. Understanding of the phenomenon of cross-tolerance of salinity with other abiotic stresses in halophytes could very well boost their potential use in phytoremediation. In this article, we present an overview of heavy metal tolerance in case of halophytes, associated mechanisms and cross-tolerance of salinity with other abiotic stresses.

8.
PLoS One ; 13(4): e0193394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641593

RESUMO

Salinity is an important environmental constraint limiting plant productivity. Understanding adaptive responses of halophytes to high saline environments may offer clues to manage and improve salt stress in crop plants. We have studied physiological, biochemical and metabolic changes in a perennial, fast growing halophyte, Sesuvium portulacastrum under 0 mM (control), 150 mM (low salt, LS) and 500 mM (high salt, HS) NaCl treatments. The changes in growth, relative water content, cation, osmolyte accumulation, H2O2 and antioxidant enzyme activity (SOD, CAT and APX) were observed under different treatment conditions. A positive correlation was revealed for sodium ion accumulation with malondialdehyde (r2 = 0.77), proline (r2 = 0.88) and chlorophyll content (r2 = 0.82) under salt treatment while a negative correlation was observed with relative tissue water content (r2 = -0.73). The roots and leaves showed contrasting accumulation of potassium and sodium ions under LS treatment. Temporal and spatial study of sodium and potassium ion content indicated differential accumulation pattern in roots and leaves, and, high potassium levels in root. Higher H2O2 content was recorded in roots than leaves and the antioxidant enzyme activities also showed significant induction under salt treatment conditions. Gene expression profiling of sodium transporters, Sodium proton exchanger (NHX3), Vacuolar ATPase (vATPase) and Salt overly sensitive1 (SOS1) showed up regulation under salt stress after 6-24 hr of NaCl treatment. Metabolite changes in the salt stressed leaves showed increased accumulation of flavonoids (3,5-dihydroxy-6,4'-dimethoxy-flavone-7-O-[α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranoside], and3,5-dihydroxy-6,3',4'-trimethoxy-flavone-7-O-[α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranoside] in both LS and HS treatments, while a glycolipid, 1-O-linolenyl-2-O-(palmitoyl)-3-O-galactopyranosyl glycerol, accumulated more in LS over HS treatments and control. The results suggest that differential spatial and temporal cation levels in roots and leaves, and accumulation of flavanoid and glycolipid could be responsible for salt adaptation of S. portulacastrum.


Assuntos
Aizoaceae/metabolismo , Antioxidantes/metabolismo , Flavonoides/metabolismo , Glicolipídeos/metabolismo , Homeostase/fisiologia , Plantas Tolerantes a Sal/metabolismo , Aizoaceae/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Homeostase/efeitos dos fármacos , Íons/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/efeitos dos fármacos , Cloreto de Sódio/administração & dosagem , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
9.
Biotechnol Rep (Amst) ; 8: 56-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28352573

RESUMO

In this study, we report phytoremediation of textile dyes using hairy roots derived through Agrobacterium rhizogenes (NCIM 5140) infection of in vitro leaf and stem explants of a halophyte Sesuvium portulacastrum (L.) L. Leaf explants showed higher frequency of hairy root induction (70%) than stem explants (30%), and maximum number of roots (leaf 42.3 ± 2.4 and stem 50.3 ± 1.7). Transformed nature of hairy roots was ascertained by amplifying 970 bp region of T-DNA of Ri plasmid. Hairy roots were screened for phytoremediation of various textile dyes and results showed that HRs were able to degrade Reactive green 19A HE4BD upto 98% within 5 days of incubation. Spectrophotometric analysis showed decrease in dye concentration while HPLC and FTIR analysis confirmed its degradation. Seed germination assay demonstrated non-toxic nature of the extracted metabolites. This is the first report on induction of hairy root culture in Sesuvium portulacastrum and phytoremediation of textile dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA