Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
J Phys Chem A ; 126(27): 4392-4412, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736009

RESUMO

Fumaric and maleic acids ((E)- and (Z)-HOOC-CH═CH-COOH, FA and MA) were studied experimentally by infrared spectroscopy in nitrogen matrixes and theoretically by quantum chemical calculations. The calculations, carried out at the DFT(B3LYP) and MP2 levels of theory, predicted the existence of at least 5 conformers of maleic acid and 10 conformers of fumaric acid. After the deposition of the matrixes, two conformers of maleic acid (I and II) and three conformers (I-III) of fumaric acid were observed and characterized vibrationally. Selective narrowband near-infrared (NIR) excitation of the first OH stretching overtones of the different conformers of maleic and fumaric acids initially present in the matrixes allowed the generation of higher-energy forms, never before observed experimentally. In the case of maleic acid, conformers I (a cis-trans form, where cis and trans designate the conformation of the carboxylic groups of the molecule) and II (cis-cis) were found to generate the novel conformers VI (trans-trans) and VII (cis-trans), respectively. The conversion of conformer II into the most stable conformer I was also observed. For fumaric acid, the cis-cis conformers I-III were found to give rise to the new cis-trans conformers IV-VII, respectively. The tunneling decay of the new conformers produced upon NIR excitation of the lowest-energy conformers initially trapped in the matrixes was observed, and their lifetimes in solid N2 were determined. The increased stability of all of the observed high-energy conformers of the studied acids in the N2 matrix, compared to the argon matrix, where they could not be observed experimentally, demonstrates the stabilizing effect of the interaction between the OH groups of the acids with the matrix N2 molecules, in line with previous observations for other carboxylic acids. In addition, the photochemistry of matrix-isolated maleic and fumaric acids upon broad-band UV irradiation (λ > 235 nm) was also investigated. UV-induced isomerization of both acids around the C═C double bond was observed, together with their decarboxylation to acrylic acid.


Assuntos
Maleatos , Nitrogênio , Argônio/química , Conformação Molecular , Nitrogênio/química
3.
Molecules ; 27(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630530

RESUMO

Fulgurites are naturally occurring structures that are formed when lightning discharges reach the ground. In this investigation, the mineralogical compositions of core and shell compartments of a rare, iron-rich fulgurite from the Mongolian Gobi Desert were investigated by X-ray diffraction and micro-Raman spectroscopy. The interpretation of the Raman data was helped by chemometric analysis, using both multivariate curve resolution (MCR) and principal component analysis (PCA), which allowed for the fast identification of the minerals present in each region of the fulgurite. In the core of the fulgurite, quartz, microcline, albite, hematite, and barite were first identified based on the Raman spectroscopy and chemometrics analyses. In contrast, in the shell compartment of the fulgurite, the detected minerals were quartz, a mixture of the K-feldspars orthoclase and microcline, albite, hematite, and goethite. The Raman spectroscopy results were confirmed by X-ray diffraction analysis of powdered samples of the two fulgurite regions, and are consistent with infrared spectroscopy data, being also in agreement with the petrographic analysis of the fulgurite, including scanning electron microscopy with backscattering electrons (SEM-BSE) and scanning electron microscopy with energy dispersive X-ray (SEM-EDX) data. The observed differences in the mineralogical composition of the core and shell regions of the studied fulgurite can be explained by taking into account the effects of both the diffusion of the melted material to the periphery of the fulgurite following the lightning and the faster cooling at the external shell region, together with the differential properties of the various minerals. The heavier materials diffused slower, leading to the concentration in the core of the fulgurite of the iron and barium containing minerals, hematite, and barite. They first underwent subsequent partial transformation into goethite due to meteoric water within the shell of the fulgurite. The faster cooling of the shell region kinetically trapped orthoclase, while the slower cooling in the core area allowed for the extensive formation of microcline, a lower temperature polymorph of orthoclase, thus justifying the prevalence of microcline in the core and a mixture of the two polymorphs in the shell. The total amount of the K-feldspars decreases only slightly in the shell, while quartz and albite appeared in somewhat larger amounts in this compartment of the fulgurite. On the other hand, at the surface of the fulgurite, barite could not be stabilized due to sulfate lost (in the form of SO2 plus O2 gaseous products). The conjugation of the performed Raman spectroscopy experiments with the chemometrics analysis (PCA and, in particular, MCR analyses) was shown to allow for the fast identification of the minerals present in the two compartments (shell and core) of the sample. This way, the XRD experiments could be done while knowing in advance the minerals that were present in the samples, strongly facilitating the data analysis, which for compositionally complex samples, such as that studied in the present investigation, would have been very much challenging, if possible.


Assuntos
Ferro , Análise Espectral Raman , Sulfato de Bário , Ferro/química , Minerais , Quartzo , Difração de Raios X
4.
J Phys Chem A ; 123(8): 1581-1593, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30698965

RESUMO

Propiolic acid (HCCCOOH, PA) was studied experimentally by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. The vibrational spectra of the cis and trans monomers (O═C-O-H dihedral equal to 0 and 180°, respectively) were measured and assigned. The trans-PA monomer was produced by selective vibrational excitation of the cis-PA monomer molecules trapped in different matrix sites. Broadband in situ UV irradiation (λ > 235 nm) of matrix-isolated PA yielded as product the higher-energy trans conformer, with no other photoproducts being detected. Two cis- cis dimers were also identified in the matrixes and characterized structurally and vibrationally. trans-PA was found to decay back to cis-PA in the dark, by tunneling, and the different lifetimes of the higher-energy PA conformer resulting from pumping different matrix sites and different experimental conditions (using a filter blocking the higher-energy IR radiation of the spectrometer source and without using such a filter) were discussed.

5.
Nanomaterials (Basel) ; 5(2): 614-655, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-28347028

RESUMO

Optical and structural properties of Si nanocrystals (Si-nc) in silica films are described. For the SiOx (x < 2) films annealed above 1000 °C, the Raman signal of Si-nc and the absorption coefficient are proportional to the amount of elemental Si detected by X-ray photoelectron spectroscopy. A good agreement is found between the measured refractive index and the value estimated by using the effective-medium approximation. The extinction coefficient of elemental Si is found to be between the values of crystalline and amorphous Si. Thermal annealing increases the degree of Si crystallization; however, the crystallization and the Si-SiO2 phase separation are not complete after annealing at 1200 °C. The 1.5-eV PL quantum yield increases as the amount of elemental Si decreases; thus, this PL is probably not directly from Si-nc responsible for absorption and detected by Raman spectroscopy. Continuous-wave laser light can produce very high temperatures in the free-standing films, which changes their structural and optical properties. For relatively large laser spots, the center of the laser-annealed area is very transparent and consists of amorphous SiO2. Large Si-nc (up to ∼300 nm in diameter) are observed in the ring around the central region. These Si-nc lead to high absorption and they are typically under compressive stress, which is connected with their formation from the liquid phase. By using strongly focused laser beams, the structural changes in the free-standing films can be made in submicron areas.

6.
Nanotechnology ; 24(24): 245701, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23680967

RESUMO

Here, we present the first successful attempt to programme the surface properties of nanostructured soft biological tissues by atomic layer deposition (ALD). The nanopatterned surface of lotus leaf was tuned by 3-125 nm TiO2 thin films. The lotus/TiO2 composites were studied by SEM-EDX, XPS, Raman, TG-DTA, XRR, water contact angle and photocatalysis measurements. While we could preserve the superhydrophobic feature of lotus, we managed to add a new property, i.e. photocatalytic activity. We also explored how surface passivation treatments and various ALD precursors affect the stability of the sensitive soft biological tissues. As we were able to gradually change the number of nanopatterns of lotus, we gained new insight into how the hollow organic nanotubes on the surface of lotus influence its superhydrophobic feature.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Catálise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Lotus/efeitos dos fármacos , Nanoestruturas/ultraestrutura , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Propriedades de Superfície/efeitos dos fármacos , Titânio/farmacologia
7.
Nat Commun ; 3: 1220, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23187620

RESUMO

Nanostructured silicon has generated a lot of interest in the past decades as a key material for silicon-based photonics. The low absorption coefficient makes silicon nanocrystals attractive as an active medium in waveguide structures, and their third-order nonlinear optical properties are crucial for the development of next generation nonlinear photonic devices. Here we report the first observation of stimulated Raman scattering in silicon nanocrystals embedded in a silica matrix under non-resonant excitation at infrared wavelengths (~1.5 µm). Raman gain is directly measured as a function of the silicon content. A giant Raman gain from the silicon nanocrystals is obtained that is up to four orders of magnitude greater than in crystalline silicon. These results demonstrate the first Raman amplifier based on silicon nanocrystals in a silica matrix, thus opening new perspectives for the realization of more efficient Raman lasers with ultra-small sizes, which would increase the synergy between electronic and photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...