Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37693376

RESUMO

In lactating mothers, the high calcium (Ca 2+ ) demand for milk production triggers significant bone resorption. While estrogen would normally counteract excessive bone loss and maintain sufficient bone formation during this postpartum period, this sex steroid drops precipitously after giving birth. Here, we report that brain-derived CCN3 (Cellular Communication Network factor 3) secreted from KISS1 neurons of the arcuate nucleus (ARC KISS1 ) fills this void and functions as a potent osteoanabolic factor to promote bone mass in lactating females. Using parabiosis and bone transplant methods, we first established that a humoral factor accounts for the female-specific, high bone mass previously observed by our group after deleting estrogen receptor alpha (ER α ) from ARC KISS1 neurons 1 . This exceptional bone phenotype in mutant females can be traced back to skeletal stem cells (SSCs), as reflected by their increased frequency and osteochondrogenic potential. Based on multiple assays, CCN3 emerged as the most promising secreted pro-osteogenic factor from ARC KISS1 neurons, acting on mouse and human SSCs at low subnanomolar concentrations independent of age or sex. That brain-derived CCN3 promotes bone formation was further confirmed by in vivo gain- and loss-of-function studies. Notably, a transient rise in CCN3 appears in ARC KISS1 neurons in estrogen-depleted lactating females coincident with increased bone remodeling and high calcium demand. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone that defines a novel female-specific brain-bone axis for ensuring mammalian species survival.

2.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36383135

RESUMO

Astrocytes, often considered as secondary responders to neurodegeneration, are emerging as primary drivers of brain disease. Here we show that mitochondrial DNA depletion in astrocytes affects their primary cilium, the signaling organelle of a cell. The progressive oxidative phosphorylation deficiency in astrocytes induces FOXJ1 and RFX transcription factors, known as master regulators of motile ciliogenesis. Consequently, a robust gene expression program involving motile cilia components and multiciliated cell differentiation factors are induced. While the affected astrocytes still retain a single cilium, these organelles elongate and become remarkably distorted. The data suggest that chronic activation of the mitochondrial integrated stress response (ISRmt) in astrocytes drives anabolic metabolism and promotes ciliary elongation. Collectively, our evidence indicates that an active signaling axis involving mitochondria and primary cilia exists and that ciliary signaling is part of ISRmt in astrocytes. We propose that metabolic ciliopathy is a novel pathomechanism for mitochondria-related neurodegenerative diseases.


Assuntos
Astrócitos , Cílios , Mitocôndrias , Astrócitos/metabolismo , Cílios/metabolismo , Cílios/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Camundongos , Animais , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , DNA Mitocondrial
3.
Science ; 378(6617): 290-295, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264814

RESUMO

Adaptations to infectious and dietary pressures shape mammalian physiology and disease risk. How such adaptations affect sex-biased diseases remains insufficiently studied. In this study, we show that sex-dependent hepatic gene programs confer a robust (~300%) survival advantage for male mice during lethal bacterial infection. The transcription factor B cell lymphoma 6 (BCL6), which masculinizes hepatic gene expression at puberty, is essential for this advantage. However, protection by BCL6 protein comes at a cost during conditions of dietary excess, which result in overt fatty liver and glucose intolerance in males. Deleting hepatic BCL6 reverses these phenotypes but markedly lowers male survival during infection, thus establishing a sex-dependent trade-off between host defense and metabolic systems. Our findings offer strong evidence that some current sex-biased diseases are rooted in ancient evolutionary trade-offs between immunity and metabolism.


Assuntos
Infecções Bacterianas , Evolução Biológica , Fígado Gorduroso , Adaptação ao Hospedeiro , Fígado , Proteínas Proto-Oncogênicas c-bcl-6 , Animais , Masculino , Camundongos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Adaptação ao Hospedeiro/genética , Adaptação ao Hospedeiro/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/fisiologia , Deleção de Genes , Fatores Sexuais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia
4.
Life Sci Alliance ; 3(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32737078

RESUMO

Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a group of severe, tissue-specific diseases of childhood with unknown pathogenesis. Brain-specific MDS manifests as devastating spongiotic encephalopathy with no curative therapy. Here, we report cell type-specific stress responses and effects of rapamycin treatment and ketogenic diet (KD) in mice with spongiotic encephalopathy mimicking human MDS, as these interventions were reported to improve some mitochondrial disease signs or symptoms. These mice with astrocyte-specific knockout of Twnk gene encoding replicative mtDNA helicase Twinkle (TwKOastro) show wide-spread cell-autonomous astrocyte activation and mitochondrial integrated stress response (ISRmt) induction with major metabolic remodeling of the brain. Mice with neuronal-specific TwKO show no ISRmt Both KD and rapamycin lead to rapid deterioration and weight loss of TwKOastro and premature trial termination. Although rapamycin had no robust effects on TwKOastro brain pathology, KD exacerbated spongiosis, gliosis, and ISRmt Our evidence emphasizes that mitochondrial disease treatments and stress responses are tissue- and disease specific. Furthermore, rapamycin and KD are deleterious in MDS-linked spongiotic encephalopathy, pointing to a crucial role of diet and metabolism for mitochondrial disease progression.


Assuntos
Encefalopatias/fisiopatologia , Doenças Mitocondriais/fisiopatologia , Estresse Fisiológico/fisiologia , Animais , Astrócitos/metabolismo , Encefalopatias/metabolismo , DNA Helicases/genética , Replicação do DNA/genética , DNA Mitocondrial/genética , Dieta Cetogênica/métodos , Modelos Animais de Doenças , Feminino , Cetose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação , Neurônios/metabolismo , Sirolimo/farmacologia
5.
Cell Metab ; 30(6): 1040-1054.e7, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31523008

RESUMO

Mitochondrial dysfunction elicits stress responses that safeguard cellular homeostasis against metabolic insults. Mitochondrial integrated stress response (ISRmt) is a major response to mitochondrial (mt)DNA expression stress (mtDNA maintenance, translation defects), but the knowledge of dynamics or interdependence of components is lacking. We report that in mitochondrial myopathy, ISRmt progresses in temporal stages and development from early to chronic and is regulated by autocrine and endocrine effects of FGF21, a metabolic hormone with pleiotropic effects. Initial disease signs induce transcriptional ISRmt (ATF5, mitochondrial one-carbon cycle, FGF21, and GDF15). The local progression to 2nd metabolic ISRmt stage (ATF3, ATF4, glucose uptake, serine biosynthesis, and transsulfuration) is FGF21 dependent. Mitochondrial unfolded protein response marks the 3rd ISRmt stage of failing tissue. Systemically, FGF21 drives weight loss and glucose preference, and modifies metabolism and respiratory chain deficiency in a specific hippocampal brain region. Our evidence indicates that FGF21 is a local and systemic messenger of mtDNA stress in mice and humans with mitochondrial disease.


Assuntos
DNA Mitocondrial/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Mitocôndrias/metabolismo , Miopatias Mitocondriais/metabolismo , Estresse Fisiológico/fisiologia , Fatores Ativadores da Transcrição/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/genética , Escherichia coli , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Miopatias Mitocondriais/genética , Deleção de Sequência , Estresse Fisiológico/genética
6.
Cell ; 177(2): 399-413.e12, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853215

RESUMO

Host defenses against pathogens are energetically expensive, leading ecological immunologists to postulate that they might participate in energetic trade-offs with other maintenance programs. However, the metabolic costs of immunity and the nature of physiologic trade-offs it engages are largely unknown. We report here that activation of immunity causes an energetic trade-off with the homeothermy (the stable maintenance of core temperature), resulting in hypometabolism and hypothermia. This immunity-induced physiologic trade-off was independent of sickness behaviors but required hematopoietic sensing of lipopolysaccharide (LPS) via the toll-like receptor 4 (TLR4). Metabolomics and genome-wide expression profiling revealed that distinct metabolic programs supported entry and recovery from the energy-conserving hypometabolic state. During bacterial infections, hypometabolic states, which could be elicited by competition for energy between maintenance programs or energy restriction, promoted disease tolerance. Together, our findings suggest that energy-conserving hypometabolic states, such as dormancy, might have evolved as a mechanism of tissue tolerance.


Assuntos
Regulação da Temperatura Corporal/imunologia , Imunidade Inata/fisiologia , Imunidade/fisiologia , Animais , Regulação da Temperatura Corporal/fisiologia , Metabolismo Energético/imunologia , Metabolismo Energético/fisiologia , Feminino , Tolerância Imunológica/imunologia , Tolerância Imunológica/fisiologia , Masculino , Metabolismo/imunologia , Camundongos , Camundongos Endogâmicos C57BL
7.
EMBO Mol Med ; 10(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30373890

RESUMO

Mitochondrial disorders (MDs) are inherited multi-organ diseases with variable phenotypes. Inclusion body myositis (IBM), a sporadic inflammatory muscle disease, also shows mitochondrial dysfunction. We investigated whether primary and secondary MDs modify metabolism to reveal pathogenic pathways and biomarkers. We investigated metabolomes of 25 mitochondrial myopathy or ataxias patients, 16 unaffected carriers, six IBM and 15 non-mitochondrial neuromuscular disease (NMD) patients and 30 matched controls. MD and IBM metabolomes clustered separately from controls and NMDs. MDs and IBM showed transsulfuration pathway changes; creatine and niacinamide depletion marked NMDs, IBM and infantile-onset spinocerebellar ataxia (IOSCA). Low blood and muscle arginine was specific for patients with m.3243A>G mutation. A four-metabolite blood multi-biomarker (sorbitol, alanine, myoinositol, cystathionine) distinguished primary MDs from others (76% sensitivity, 95% specificity). Our omics approach identified pathways currently used to treat NMDs and mitochondrial stroke-like episodes and proposes nicotinamide riboside in MDs and IBM, and creatine in IOSCA and IBM as novel treatment targets. The disease-specific metabolic fingerprints are valuable "multi-biomarkers" for diagnosis and promising tools for follow-up of disease progression and treatment effect.


Assuntos
Biomarcadores/análise , Metaboloma , Doenças Mitocondriais/patologia , Miosite de Corpos de Inclusão/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/terapia , Miosite de Corpos de Inclusão/diagnóstico , Miosite de Corpos de Inclusão/terapia , Sensibilidade e Especificidade , Adulto Jovem
8.
EMBO Mol Med ; 10(1): 13-21, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29109127

RESUMO

DNA polymerase gamma (POLG), the mtDNA replicase, is a common cause of mitochondrial neurodegeneration. Why POLG defects especially cause central nervous system (CNS) diseases is unknown. We discovered a complex genomic regulatory locus for POLG, containing three functional CNS-specific enhancers that drive expression specifically in oculomotor complex and sensory interneurons of the spinal cord, completely overlapping with the regions showing neuronal death in POLG patients. The regulatory locus also expresses two functional RNAs, LINC00925-RNA and MIR9-3, which are coexpressed with POLG The MIR9-3 targets include NR2E1, a transcription factor maintaining neural stem cells in undifferentiated state, and MTHFD2, the regulatory enzyme of mitochondrial folate cycle, linking POLG expression to stem cell differentiation and folate metabolism. Our evidence suggests that distant genomic non-coding regions contribute to regulation of genes encoding mitochondrial proteins. Such genomic arrangement of POLG locus, driving expression to CNS regions affected in POLG patients, presents a potential mechanism for CNS-specific manifestations in POLG disease.


Assuntos
Doenças do Sistema Nervoso Central/genética , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Regulação da Expressão Gênica , Loci Gênicos , Animais , Encéfalo/metabolismo , Morte Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Ratos , Medula Espinal/metabolismo
9.
Cell Metab ; 26(2): 419-428.e5, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768179

RESUMO

Mitochondrial dysfunction elicits various stress responses in different model systems, but how these responses relate to each other and contribute to mitochondrial disease has remained unclear. Mitochondrial myopathy (MM) is the most common manifestation of adult-onset mitochondrial disease and shows a multifaceted tissue-specific stress response: (1) transcriptional response, including metabolic cytokines FGF21 and GDF15; (2) remodeling of one-carbon metabolism; and (3) mitochondrial unfolded protein response. We show that these processes are part of one integrated mitochondrial stress response (ISRmt), which is controlled by mTORC1 in muscle. mTORC1 inhibition by rapamycin downregulated all components of ISRmt, improved all MM hallmarks, and reversed the progression of even late-stage MM, without inducing mitochondrial biogenesis. Our evidence suggests that (1) chronic upregulation of anabolic pathways contributes to MM progression, (2) long-term induction of ISRmt is not protective for muscle, and (3) rapamycin treatment trials should be considered for adult-type MM with raised FGF21.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias Musculares/metabolismo , Miopatias Mitocondriais/metabolismo , Estresse Fisiológico , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Pessoa de Meia-Idade , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia
10.
Cell Metab ; 23(4): 635-48, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26924217

RESUMO

Mitochondrial dysfunction affects cellular energy metabolism, but less is known about the consequences for cytoplasmic biosynthetic reactions. We report that mtDNA replication disorders caused by TWINKLE mutations-mitochondrial myopathy (MM) and infantile onset spinocerebellar ataxia (IOSCA)-remodel cellular dNTP pools in mice. MM muscle shows tissue-specific induction of the mitochondrial folate cycle, purine metabolism, and imbalanced and increased dNTP pools, consistent with progressive mtDNA mutagenesis. IOSCA-TWINKLE is predicted to hydrolyze dNTPs, consistent with low dNTP pools and mtDNA depletion in the disease. MM muscle also modifies the cytoplasmic one-carbon cycle, transsulfuration, and methylation, as well as increases glucose uptake and its utilization for de novo serine and glutathione biosynthesis. Our evidence indicates that the mitochondrial replication machinery communicates with cytoplasmic dNTP pools and that upregulation of glutathione synthesis through glucose-driven de novo serine biosynthesis contributes to the metabolic stress response. These results are important for disorders with primary or secondary mtDNA instability and offer targets for metabolic therapy.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Miopatias Mitocondriais/metabolismo , Nucleotídeos/metabolismo , Degenerações Espinocerebelares/metabolismo , Adulto , Animais , Carbono/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA Mitocondrial/genética , Feminino , Ácido Fólico/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/patologia , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Mutação , Serina/metabolismo , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...