Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 864, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195678

RESUMO

The migration of neural progenitor cells (NPCs) to their final destination during development follows well-defined pathways, such as along blood vessels. Cells originating from the highly malignant tumor glioblastoma (GBM) seem to exploit similar routes for infiltrating the brain parenchyma. In this report, we have examined the migration of GBM cells using three-dimensional high-resolution confocal microscopy in brain tumors derived from eight different human GBM cell lines xenografted into immunodeficient mice. The primary invasion routes identified were long-distance migration along white matter tracts and local migration along blood vessels. We found that GBM cells in the majority of tumors (6 out of 8) did not exhibit association with blood vessels. These tumors, derived from low lamin A/C expressing GBM cells, were comparatively highly diffusive and invasive. Conversely, in 2 out of 8 tumors, we noted perivascular invasion and displacement of astrocyte end-feet. These tumors exhibited less diffusive migration, grew as solid tumors, and were distinguished by elevated expression of lamin A/C. We conclude that the migration pattern of glioblastoma is distinctly tumor cell-specific. Furthermore, the ability to invade the confined spaces within white matter tracts may necessitate low expression of lamin A/C, contributing to increased nuclear plasticity. This study highlights the role of GBM heterogeneity in driving the aggressive growth of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Lamina Tipo A , Encéfalo , Agressão
2.
Mol Syst Biol ; 17(9): e10105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34528760

RESUMO

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia , Análise de Célula Única
3.
Mol Cancer Res ; 18(7): 981-991, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32234828

RESUMO

Glioblastoma multiforme continues to have a dismal prognosis. Even though detailed information on the genetic aberrations in cell signaling and cell-cycle checkpoint control is available, no effective targeted treatment has been developed. Despite the advanced molecular defects, glioblastoma cells may have remnants of normal growth-inhibitory pathways, such as the bone morphogenetic protein (BMP) signaling pathway. We have evaluated the growth-inhibitory effect of BMP4 across a broad spectrum of patient samples, using a panel of 40 human glioblastoma initiating cell (GIC) cultures. A wide range of responsiveness was observed. BMP4 sensitivity was positively correlated with a proneural mRNA expression profile, high SOX2 activity, and BMP4-dependent upregulation of genes associated with inhibition of the MAPK pathway, as demonstrated by gene set enrichment analysis. BMP4 response in sensitive cells was mediated by the canonical BMP receptor pathway involving SMAD1/5/9 phosphorylation and SMAD4 expression. SOX2 was consistently downregulated in BMP4-treated cells. Forced expression of SOX2 attenuated the BMP4 sensitivity including a reduced upregulation of MAPK-inhibitory genes, implying a functional relationship between SOX2 downregulation and sensitivity. The results show an extensive heterogeneity in BMP4 responsiveness among GICs and identify a BMP4-sensitive subgroup, in which SOX2 is a mediator of the response. IMPLICATIONS: Development of agonists targeting the BMP signaling pathway in glioblastoma is an attractive avenue toward a better treatment. Our study may help find biomarkers that predict the outcome of such treatment and enable stratification of patients.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fatores de Transcrição SOXB1/genética , Regulação para Cima/efeitos dos fármacos
4.
J Pathol ; 249(3): 295-307, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31298733

RESUMO

Grade IV astrocytoma/glioblastoma multiforme (GBM) is essentially incurable, partly due to its heterogenous nature, demonstrated even within the glioma-initiating cell (GIC) population. Increased therapy resistance of GICs is coupled to transition into a mesenchymal (MES) cell state. The GBM MES molecular signature displays a pronounced inflammatory character and its expression vary within and between tumors. Herein, we investigate how MES transition of GBM cells relates to inflammatory responses of normal astroglia. In response to CNS insults astrocytes enter a reactive cell state and participate in directing neuroinflammation and subsequent healing processes. We found that the MES signature show strong resemblance to gene programs induced in reactive astrocytes. Likewise, astrocyte reactivity gene signatures were enriched in therapy-resistant MES-like GIC clones. Variable expression of astrocyte reactivity related genes also largely defined intratumoral GBM cell heterogeneity at the single-cell level and strongly correlated with our previously defined therapy-resistance signature (based on linked molecular and functional characterization of GIC clones). In line with this, therapy-resistant MES-like GIC secreted immunoregulatory and tissue repair related proteins characteristic of astrocyte reactivity. Moreover, sensitive GIC clones could be made reactive through long-term exposure to the proinflammatory cytokine interleukin 1 beta (IL1ß). IL1ß induced a slow MES transition, increased therapy resistance, and a shift in DNA methylation profile towards that of resistant clones, which confirmed a slow reprogramming process. In summary, GICs enter through MES transition a reactive-astrocyte-like cell state, connected to therapy resistance. Thus, from a biological point of view, MES GICs would preferably be called 'reactive GICs'. The ability of GBM cells to mimic astroglial reactivity contextualizes the immunomodulatory and microenvironment reshaping abilities of GBM cells that generate a tumor-promoting milieu. This insight will be important to guide the development of future sensitizing therapies targeting treatment-resistant relapse-driving cell populations as well as enhancing the efficiency of immunotherapies in GBM. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioma/tratamento farmacológico , Antineoplásicos/efeitos adversos , Astrócitos/metabolismo , Astrócitos/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Gradação de Tumores , Transcriptoma , Células Tumorais Cultivadas , Microambiente Tumoral
5.
BMC Bioinformatics ; 20(1): 304, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164078

RESUMO

BACKGROUND: Pharmacological treatment of complex diseases using more than two drugs is commonplace in the clinic due to better efficacy, decreased toxicity and reduced risk for developing resistance. However, many of these higher-order treatments have not undergone any detailed preceding in vitro evaluation that could support their therapeutic potential and reveal disease related insights. Despite the increased medical need for discovery and development of higher-order drug combinations, very few reports from systematic large-scale studies along this direction exist. A major reason is lack of computational tools that enable automated design and analysis of exhaustive drug combination experiments, where all possible subsets among a panel of pre-selected drugs have to be evaluated. RESULTS: Motivated by this, we developed COMBImage2, a parallel computational framework for higher-order drug combination analysis. COMBImage2 goes far beyond its predecessor COMBImage in many different ways. In particular, it offers automated 384-well plate design, as well as quality control that involves resampling statistics and inter-plate analyses. Moreover, it is equipped with a generic matched filter based object counting method that is currently designed for apoptotic-like cells. Furthermore, apart from higher-order synergy analyses, COMBImage2 introduces a novel data mining approach for identifying interesting temporal response patterns and disentangling higher- from lower- and single-drug effects. COMBImage2 was employed in the context of a small pilot study focused on the CUSP9v4 protocol, which is currently used in the clinic for treatment of recurrent glioblastoma. For the first time, all 246 possible combinations of order 4 or lower of the 9 single drugs consisting the CUSP9v4 cocktail, were evaluated on an in vitro clonal culture of glioma initiating cells. CONCLUSIONS: COMBImage2 is able to automatically design and robustly analyze exhaustive and in general higher-order drug combination experiments. Such a versatile video microscopy oriented framework is likely to enable, guide and accelerate systematic large-scale drug combination studies not only for cancer but also other diseases.


Assuntos
Antineoplásicos/uso terapêutico , Mineração de Dados/métodos , Combinação de Medicamentos , Glioblastoma/tratamento farmacológico , Algoritmos , Apoptose , Humanos , Microscopia de Vídeo , Recidiva Local de Neoplasia/tratamento farmacológico , Projetos Piloto
6.
BMC Bioinformatics ; 19(1): 453, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477419

RESUMO

BACKGROUND: Large-scale pairwise drug combination analysis has lately gained momentum in drug discovery and development projects, mainly due to the employment of advanced experimental-computational pipelines. This is fortunate as drug combinations are often required for successful treatment of complex diseases. Furthermore, most new drugs cannot totally replace the current standard-of-care medication, but rather have to enter clinical use as add-on treatment. However, there is a clear deficiency of computational tools for label-free and temporal image-based drug combination analysis that go beyond the conventional but relatively uninformative end point measurements. RESULTS: COMBImage is a fast, modular and instrument independent computational framework for in vitro pairwise drug combination analysis that quantifies temporal changes in label-free video microscopy movies. Jointly with automated analyses of temporal changes in cell morphology and confluence, it performs and displays conventional cell viability and synergy end point analyses. The image processing algorithms are parallelized using Google's MapReduce programming model and optimized with respect to method-specific tuning parameters. COMBImage is shown to process time-lapse microscopy movies from 384-well plates within minutes on a single quad core personal computer. This framework was employed in the context of an ongoing drug discovery and development project focused on glioblastoma multiforme; the most deadly form of brain cancer. Interesting add-on effects of two investigational cytotoxic compounds when combined with vorinostat were revealed on recently established clonal cultures of glioma-initiating cells from patient tumor samples. Therapeutic synergies, when normal astrocytes were used as a toxicity cell model, reinforced the pharmacological interest regarding their potential clinical use. CONCLUSIONS: COMBImage enables, for the first time, fast and optimized pairwise drug combination analyses of temporal changes in label-free video microscopy movies. Providing this jointly with conventional cell viability based end point analyses, it could help accelerating and guiding any drug discovery and development project, without use of cell labeling and the need to employ a particular live cell imaging instrument.


Assuntos
Quimioterapia Combinada , Processamento de Imagem Assistida por Computador , Microscopia de Vídeo/métodos , Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Glioblastoma/tratamento farmacológico , Humanos , Filmes Cinematográficos
8.
Cancer Res ; 77(7): 1741-1752, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087597

RESUMO

Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca2+ and KCa channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstream signaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na+, which compromised Na+-dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas. Cancer Res; 77(7); 1741-52. ©2017 AACR.


Assuntos
Aminoácidos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/fisiologia , Glioma/tratamento farmacológico , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Transporte Biológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Morte Celular , Linhagem Celular Tumoral , Di-Hidropiridinas/farmacologia , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Micotoxinas/farmacologia , Células-Tronco Neoplásicas/patologia , Proteômica , Sódio/metabolismo
9.
Cell Rep ; 17(11): 2994-3009, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974212

RESUMO

Intratumoral heterogeneity is a hallmark of glioblastoma multiforme and thought to negatively affect treatment efficacy. Here, we establish libraries of glioma-initiating cell (GIC) clones from patient samples and find extensive molecular and phenotypic variability among clones, including a range of responses to radiation and drugs. This widespread variability was observed as a continuum of multitherapy resistance phenotypes linked to a proneural-mesenchymal shift in the transcriptome. Multitherapy resistance was associated with a semi-stable cell state that was characterized by an altered DNA methylation pattern at promoter regions of mesenchymal master regulators and enhancers. The gradient of cell states within the GIC compartment constitutes a distinct form of heterogeneity. Our findings may open an avenue toward the development of new therapeutic rationales designed to reverse resistant cell states.


Assuntos
Metilação de DNA/genética , Glioblastoma/genética , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas
10.
Cell Rep ; 14(2): 380-9, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26748716

RESUMO

Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell's phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment.


Assuntos
Proteínas/genética , Proteômica/métodos , RNA/genética , Linhagem Celular Tumoral , Humanos
11.
EBioMedicine ; 2(10): 1351-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26629530

RESUMO

Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.


Assuntos
Bancos de Espécimes Biológicos , Glioblastoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Análise por Conglomerados , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Instabilidade Genômica , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/cirurgia , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Células Tumorais Cultivadas , Adulto Jovem
12.
Cell ; 157(2): 313-328, 2014 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-24656405

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Piperidinas/farmacologia , Quinolinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Xenoenxertos , Humanos , Hidroxiquinolinas/farmacologia , MAP Quinase Quinase 4/metabolismo , Camundongos , Transplante de Neoplasias , Pinocitose/efeitos dos fármacos , Vacúolos/metabolismo , Peixe-Zebra
13.
PLoS One ; 7(8): e42488, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880002

RESUMO

Platelet-derived growth factor (PDGF) plays an important role in development of the central nervous system, including the retina. Excessive PDGF signaling is associated with proliferative retinal disorders. We reported previously that transgenic mice in which PDGF-B was over-expressed under control of the nestin enhancer, nes/tk-PdgfB-lacZ, exhibited enhanced apoptosis in the developing corpus striatum. These animals display enlarged lateral ventricles after birth as well as behavioral aberrations as adults. Here, we report that in contrast to the relatively mild central nervous system phenotype, development of the retina is severely disturbed in nes/tk-PdgfB-lacZ mice. In transgenic retinas all nuclear layers were disorganized and photoreceptor segments failed to develop properly. Since astrocyte precursor cells did not populate the retina, retinal vascular progenitors could not form a network of vessels. With time, randomly distributed vessels resembling capillaries formed, but there were no large trunk vessels and the intraocular pressure was reduced. In addition, we observed a delayed regression of the hyaloid vasculature. The prolonged presence of this structure may contribute to the other abnormalities observed in the retina, including the defective lamination.


Assuntos
Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Retina/patologia , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/patologia , Células-Tronco/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Benzamidas , Biomarcadores/metabolismo , Capilares/efeitos dos fármacos , Capilares/crescimento & desenvolvimento , Capilares/metabolismo , Capilares/patologia , Morte Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Pressão Intraocular/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Neuroglia/metabolismo , Neuroglia/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Retina/fisiopatologia , Vasos Retinianos/metabolismo , Vasos Retinianos/fisiopatologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Fatores de Tempo , Transgenes/genética
14.
Exp Cell Res ; 316(17): 2779-89, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20643125

RESUMO

Platelet-derived growth factor (PDGF) is important in central nervous system (CNS) development, and aberrant expression of PDGF and its receptors has been linked to developmental defects and brain tumorigenesis. We previously found that neural stem and progenitor cells in culture produce PDGF and respond to it by autocrine and/or paracrine signaling. We therefore aimed to examine CNS development after PDGF overexpression in neural stem cells in vivo. Transgenic mice were generated with PDGF-B under control of a minimal nestin enhancer element, which is specific for embryonic expression and will not drive adult expression in mice. The resulting mouse showed increased apoptosis in the developing striatum, which suggests a disturbed regulation of progenitor cells. Later in neurodevelopment, in early postnatal life, mice displayed enlarged lateral ventricles. This enlargement remained into adulthood and it was more pronounced in male mice than in transgenic female mice. Nevertheless, there was an overall normal composition of cell types and numbers in the brain and the transgenic mice were viable and fertile. Adult transgenic males, however, showed behavioral aberrations and locomotor dysfunction. Thus, a tightly regulated expression of PDGF during embryogenesis is required for normal brain development and function in mice.


Assuntos
Comportamento Animal/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Ventrículos Laterais/patologia , Neurônios/citologia , Proteínas Proto-Oncogênicas c-sis/genética , Animais , Encéfalo/crescimento & desenvolvimento , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/farmacologia , Ventrículos Laterais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Nestina , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...