Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049655

RESUMO

Two herbal plants, Akebia quinata D. leaf/fruit and Clitoria ternatea L. flower, well-known in traditional medicine systems, were investigated using a non-target effect-directed profiling. High-performance thin-layer chromatography (HPTLC) was combined with 11 different effect-directed assays, including two multiplex bioassays, for assessing their bioactivity. Individual active zones were heart-cut eluted for separation via an orthogonal high-performance liquid chromatography column to heated electrospray ionization high-resolution mass spectrometry (HPLC-HESI-HRMS) for tentative assignment of molecular formulas according to literature data. The obtained effect-directed profiles provided information on 2,2-diphenyl-1-picrylhydrazyl scavenging, antibacterial (against Bacillus subtilis and Aliivibrio fischeri), enzyme inhibition (tyrosinase, α-amylase, ß-glucuronidase, butyrylcholinesterase, and acetylcholinesterase), endocrine (agonists and antagonists), and genotoxic (SOS-Umu-C) activities. The main bioactive compound zones in A. quinata leaf were tentatively assigned to be syringin, vanilloloside, salidroside, α-hederin, cuneataside E, botulin, and oleanolic acid, while salidroside and quinatic acids were tentatively identified in the fruit. Taraxerol, kaempherol-3-rutinoside, kaempferol-3-glucoside, quercetin-3-rutinoside, and octadecenoic acid were tentatively found in the C. ternatea flower. This straightforward hyphenated technique made it possible to correlate the biological properties of the herbs with possible compounds. The meaningful bioactivity profiles contribute to a better understanding of the effects and to more efficient food control and food safety.


Assuntos
Clitoria , Acetilcolinesterase/química , Cromatografia em Camada Fina/métodos , Butirilcolinesterase , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray , Bioensaio
2.
Food Chem ; 415: 135761, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36881959

RESUMO

Distinguishing oil samples from each other is challenging but it is crucial for ensuring food quality, and for detecting and preventing the possible adulteration of these products. Lipidomic profiling is believed to provide sufficient information to get fit-to-purpose confidence of oil identification as well as to deliver oil-specific lipid features which could be used as targets for routine authenticity testing of camelina, flax, and hemp oil in food control laboratories. Conducted di- and triacylglycerol profiling by LC/Q-TOFMS yielded successful differentiation of the oils. A marker panel consisting of 27 lipids (both DAGs and TAGs) useful for quality verification and authenticity assurance of the oils was established. Moreover, sunflower, rapeseed, and soybean oils were analysed as potential adulterants. We identified 6 lipid markers (DAGs 34:6, 35:2, 40:1, 40:2, 42:2, and TAG 63:1) which can be used for revealing the adulteration of camelina, hemp, and flax seed oils with these oils.


Assuntos
Lipidômica , Óleos de Plantas , Óleos de Plantas/análise , Óleo de Soja/análise , Qualidade dos Alimentos
3.
Molecules ; 28(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838523

RESUMO

Planar chromatography has recently been combined with six different effect-directed assays for three golden root (Rhodiola rosea L.) samples. However, the profiles obtained showed an intense tailing, making zone differentiation impossible. The profiling was therefore improved to allow for the detection of individual bioactive compounds, and the range of samples was extended to 15 commercial golden root products. Further effect-directed assays were studied providing information on 15 different effect mechanisms, i.e., (1) tyrosinase, (2) acetylcholinesterase, (3) butyrylcholinesterase, (4) ß-glucuronidase, and (5) α-amylase inhibition, as well as endocrine activity via the triplex planar yeast antagonist-verified (6-8) estrogen or (9-11) androgen screen, (12) genotoxicity via the planar SOS-Umu-C bioassay, antimicrobial activity against (13) Gram-negative Aliivibrio fischeri and (14) Gram-positive Bacillus subtilis bacteria, and (15) antioxidative activity (DPPH• radical scavengers). Most of the golden root profiles obtained were characteristic, but some samples differed substantially. The United States Pharmacopeia reference product showed medium activity in most of the assays. The six most active compound zones were further characterized using high-resolution mass spectrometry, and the mass signals obtained were tentatively assigned to molecular formulae. In addition to confirming the known activities, this study is the first to report that golden root constituents inhibit butyrylcholinesterase (rosin was tentatively assigned), ß-glucuronidase (rosavin, rosarin, rosiridin, viridoside, and salidroside were tentatively assigned), and α-amylase (stearic acid and palmitic acid were tentatively assigned) and that they are genotoxic (hydroquinone was tentatively assigned) and are both agonistic and antagonistic endocrine active.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Butirilcolinesterase/farmacologia , Acetilcolinesterase/química , Extratos Vegetais/química , Cromatografia em Camada Fina/métodos , Espectrometria de Massas , Bacillus subtilis , Bioensaio , Glucuronidase
4.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500392

RESUMO

Artic root is a well-known plant adaptogen with multipotential pharmacological properties. Thin-layer chromatography (TLC)-screening followed by diode-array high-performance liquid chromatography and nuclear magnetic resonance spectroscopy proved to be a reliable and convenient method for the simultaneous determination of the quality of various herbal raw materials and supplements. This combination allowed for comparing and differentiating arctic root samples as well as defining their authenticity. The study provided information on the chemical and biological properties of the seven chosen samples as well as qualitative and quantitative evaluation of the quality markers: rosavin, salidroside, and p-tyrosol. The absence of rosavin, salidroside, and p-tyrosol in three samples was detected using TLC screening and confirmed by HPLC-DAD and NMR. The paper highlighted the importance of quality control and strict regulation for herbal medicine supplements and preparations.


Assuntos
Glucosídeos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Glucosídeos/química , Espectroscopia de Ressonância Magnética
5.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408515

RESUMO

The effect-directed detection (EDD) of Schisandra rubriflora fruit and leaves extracts was performed to assess their pharmacological properties. The EDD comprised TLC-direct bioautography against Bacillus subtilis, a DPPH assay, as well as α-glucosidase, lipase, tyrosinase, and acetylcholinesterase (AChE) inhibition assays. The leaf extracts showed stronger antioxidant activity than the fruit extract as well as inhibition of tyrosinase and lipase. The fruit extract was found to be extremely active against B. subtilis and to inhibit α-glucosidase and AChE slightly more than the leaf extracts. UHPLC-MS/MS analysis was carried out for the bioactive fractions and pointed to the possible anti-dementia properties of the dibenzocyclooctadiene lignans found in the upper TLC fractions. Gomisin N (518 mg/100 g DW), schisanhenol (454 mg/100 g DW), gomisin G (197 mg/100 g DW), schisandrin A (167 mg/100 g DW), and gomisin O (150 mg/100 g DW) were the quantitatively dominant compounds in the fruit extract. In total, twenty-one lignans were found in the bioactive fractions.


Assuntos
Lignanas , Schisandra , Acetilcolinesterase , Ciclo-Octanos/química , Frutas/química , Lignanas/química , Lipase/análise , Monofenol Mono-Oxigenase , Extratos Vegetais/química , Schisandra/química , Espectrometria de Massas em Tandem , alfa-Glucosidases
6.
Molecules ; 27(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335212

RESUMO

The fast-growing food industry is bringing significant number of new products to the market. To protect consumers' health and rights, it is crucial that food control laboratories are able to ensure reliable quality testing, including product authentication and detection of adulterations. In our study, we applied a fast and eco-friendly method based on shotgun-lipidomic mass spectrometry for the authentication of niche edible oils. Comprehensive lipid profiles of camelina (CA), flax (FL) and hemp (HP) seed oils were obtained. With the aid of principal component analysis (PCA), it was possible to detect and distinguish each of them based on their lipid profiles. Lipidomic markers characteristic ofthe oils were also identified, which can be used as targets and expedite development of new multiplexed testing methods.


Assuntos
Linho , Lipidômica , Alimentos , Espectrometria de Massas , Óleos de Plantas/química
7.
J Chromatogr A ; 1649: 462217, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34034112

RESUMO

Adulterations of food and pharmaceutical preparations are the important global problem. On the one hand, fraud practices are becoming more and more sophisticated while on the other, monitoring and uncovering falsifications are insufficient. One of the most common consumer concern is the quality and authenticity of the purchased products, related to the confidence that they have composition and properties in accordance with the manufacturer's declaration on the label. This refers also to pharmaceuticals potentially delivering great health benefits such as Rhodiola rosea L. supplements. The aim of this study was defining authenticity and possible adulterations of two R. rosea preparations basing on their TLC-bioprofiles and the presence of biomarker compounds characteristic for this plant. The effect-directed analysis (EDA), i.e. TLC hyphenated with micro-chemical and biological assays performed directly on TLC plates followed by HPLC-ESI-MS was used for the bioprofiling of antioxidants, antibacterials, and inhibitors of lipase, acetylcholine, α-glucosidase and tyrosinase as well as for the identification of the biomarkers. The results pointed to the possible adulteration of one of the tested products related to the absence of two rosavins, the most important quality markers of R. rosea.


Assuntos
Compostos Fitoquímicos/análise , Preparações de Plantas/análise , Rhodiola/química , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais , Contaminação de Medicamentos , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...