Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(9): 102294, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872018

RESUMO

Promiscuous G protein-coupled receptors (GPCRs) engage multiple Gα subtypes with different efficacies to propagate signals in cells. A mechanistic understanding of Gα selectivity by GPCRs is critical for therapeutic design, since signaling can be restrained by ligand-receptor complexes to preferentially engage specific G proteins. However, details of GPCR selectivity are unresolved. Here, we investigated cognate G protein selectivity using the prototypical promiscuous Gαq/11 and Gα12/13 coupling receptors, angiotensin II type I receptor (AT1R) and prostaglandin F2α receptor (FP), bioluminescence resonance energy transfer-based G protein and pathway-selective sensors, and G protein knockout cells. We determined that competition between G proteins for receptor binding occurred in a receptor- and G protein-specific manner for AT1R and FP but not for other receptors tested. In addition, we show that while Gα12/13 competes with Gαq/11 for AT1R coupling, the opposite occurs for FP, and Gαq-mediated signaling regulated G protein coupling only at AT1R. In cells, the functional modulation of biased ligands at FP and AT1R was contingent upon cognate Gα availability. The efficacy of AT1R-biased ligands, which poorly signal through Gαq/11, increased in the absence of Gα12/13. Finally, we show that a positive allosteric modulator of Gαq/11 signaling that also allosterically decreases FP-Gα12/13 coupling, lost its negative modulation in the absence of Gαq/11 coupling to FP. Together, our findings suggest that despite preferential binding of similar subsets of G proteins, GPCRs follow distinct selectivity rules, which may contribute to the regulation of ligand-mediated G protein bias of AT1R and FP.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Receptor Tipo 1 de Angiotensina , Receptores de Prostaglandina , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Prostaglandina/metabolismo
2.
Nat Commun ; 8: 15054, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28416805

RESUMO

In addition to G protein-coupled receptor (GPCR) desensitization and endocytosis, ß-arrestin recruitment to ligand-stimulated GPCRs promotes non-canonical signalling cascades. Distinguishing the respective contributions of ß-arrestin recruitment to the receptor and ß-arrestin-promoted endocytosis in propagating receptor signalling has been limited by the lack of selective analytical tools. Here, using a combination of virtual screening and cell-based assays, we have identified a small molecule that selectively inhibits the interaction between ß-arrestin and the ß2-adaptin subunit of the clathrin adaptor protein AP2 without interfering with the formation of receptor/ß-arrestin complexes. This selective ß-arrestin/ß2-adaptin inhibitor (Barbadin) blocks agonist-promoted endocytosis of the prototypical ß2-adrenergic (ß2AR), V2-vasopressin (V2R) and angiotensin-II type-1 (AT1R) receptors, but does not affect ß-arrestin-independent (transferrin) or AP2-independent (endothelin-A) receptor internalization. Interestingly, Barbadin fully blocks V2R-stimulated ERK1/2 activation and blunts cAMP accumulation promoted by both V2R and ß2AR, supporting the concept of ß-arrestin/AP2-dependent signalling for both G protein-dependent and -independent pathways.


Assuntos
Endocitose/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , beta-Arrestinas/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
3.
Oncotarget ; 7(38): 61152-61165, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27458154

RESUMO

Lymphangioleiomyomatosis (LAM) is a destructive lung disease that can arise sporadically or in adults suffering from the tumor syndrome tuberous sclerosis complex (TSC). Microscopic tumors ('LAM nodules') in the lung interstitium arise from lymphatic invasion and metastasis. These consist of smooth muscle-like cells (LAM cells) that exhibit markers of neural crest differentiation and loss of the tumor suppressor protein 'tuberous sclerosis complex-2' (TSC2). Consistent with a neural phenotype, expression of the neuropeptide urotensin-II and its receptor was detected in LAM nodules. We hypothesized that loss of TSC2 sensitizes cells to the oncogenic effects of urotensin-II. TSC2-deficient Eker rat uterine leiomyoma ELT3 cells were stably transfected with empty vector or plasmid for the expression of TSC2. Urotensin-II increased cell viability and proliferation in TSC2-deficient cells, but not in TSC2-reconstituted cells. When exposed to urotensin-II, TSC2-deficient cells exhibited greater migration, anchorage-independent cell growth, and matrix invasion. The effects of urotensin-II on TSC2-deficient cells were blocked by the urotensin receptor antagonist SB657510, and accompanied by activation of Erk mitogen-activated protein kinase and focal adhesion kinase. Urotensin-II-induced proliferation and migration were reproduced in TSC2-deficient human angiomyolipoma cells, but not in those stably expressing TSC2. In a mouse xenograft model, SB657510 blocked the growth of established ELT3 tumors, reduced the number of circulating tumor cells, and attenuated the production of VEGF-D, a clinical biomarker of LAM. Urotensin receptor antagonists may be selective therapeutic agents for the treatment of LAM or other neural crest-derived neoplasms featuring loss of TSC2 or increased expression of the urotensin receptor.


Assuntos
Proteínas Supressoras de Tumor/genética , Urotensinas/farmacologia , Neoplasias Uterinas/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Quimiotaxia , Feminino , Mutação em Linhagem Germinativa , Humanos , Pneumopatias/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonamidas/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa , Neoplasias Uterinas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Org Biomol Chem ; 13(28): 7750-61, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26090777

RESUMO

On pursuing molecules that delay labour, so-called tocolytics, the prostaglandin F2α receptor (FP) was targeted, because of its role in the stimulation of uterine contractions leading to birth and preterm birth. Previously, both the indolizidinone PDC-113.824 (5) and the aza-glycinyl-proline analog 6 were shown to delay labour in mice by modulating the FP function, likely by an allosteric mechanism, which features biased signalling. The crystal structure and computational analyses of the indolizidin-2-one amino acid and aza-glycinyl-proline components of 5 and 6 in model peptides have shown them to adopt a geometry that mimics ideal type I and II'ß-turns. To elucidate the precise turn geometry for receptor recognition, analogs 1-4 have now been synthesized: macrocycle and pyrroloazepinone mimics 1 and 2 to mimic type I, and glycinyl-proline and d-alaninyl-proline analogs 3 and 4 to favour type II'ß-turn geometry. Notably, transannular cyclization of peptide macrocycle 13 has provided diastereoselectively pyrroloazepinone 15 by a novel route that provides effective access to mimics 1 and 2 by way of a common intermediate. Among the four analogs, none exhibited efficacy nor potency on par with 5 and 6; however, d-alaninyl-proline analog 4 proved superior to the other analogs in reducing PGF2α-induced myometrial contractions and inhibiting FP modulation of cell ruffling, a response dependent on the Gα12/RhoA/ROCK signaling pathway. Furthermore Gly-Pro analog 3 potentiated the effect of PGF2α on Gαq mediated ERK1/2 activation. Evidence that 4 adopted turn geometry was obtained by conformational analysis using NMR spectroscopy to characterize respectively the influence of solvent and temperature on the chemical shifts of the amide NH protons. Although mimicry of the type II' geometry by 3, 4, 5 and 6 may favour activity, distortion from ideal geometry by the indolizidinone and aza-glycinyl residues of the latter appears to enhance their biological effects.


Assuntos
Compostos Aza/farmacologia , Indolizidinas/farmacologia , Oligopeptídeos/farmacologia , Receptores de Prostaglandina/antagonistas & inibidores , Animais , Compostos Aza/química , Indolizidinas/química , Camundongos , Conformação Molecular , Oligopeptídeos/química , Relação Estrutura-Atividade
5.
J Biol Chem ; 289(34): 23302-17, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25016018

RESUMO

ß-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/ß-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either ß-arrestin-1 or -2. We find a novel role for MAPK in the B2R/ß-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat ß-arrestin-2 (PET(178)P), but not rat ß-arrestin-1 (PER(177)P). While the ERK1/2 regulatory motif is conserved between rat and mouse ß-arrestin-2, it is surprisingly not conserved in human ß-arrestin-2 (PEK(178)P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human ß-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human ß-arrestin-2 (T/K178D) significantly stabilizes B2R/ß-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of ß2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the ß-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of ß-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/ß-arrestin-2 signaling roles among species.


Assuntos
Arrestinas/metabolismo , Endossomos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Arrestinas/química , Células COS , Chlorocebus aethiops , Endocitose , Células HEK293 , Humanos , Dados de Sequência Molecular , Transporte Proteico , Ratos , Homologia de Sequência de Aminoácidos , Transdução de Sinais , beta-Arrestina 1 , beta-Arrestina 2 , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...