Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1379121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665811

RESUMO

Modulating the catalytic activity of acyl-ACP thioesterase (TE) is an important biotechnological target for effectively increasing flux and diversifying products of the fatty acid biosynthesis pathway. In this study, a directed evolution approach was developed to improve the fatty acid titer and fatty acid diversity produced by E. coli strains expressing variant acyl-ACP TEs. A single round of in vitro directed evolution, coupled with a high-throughput colorimetric screen, identified 26 novel acyl-ACP TE variants that convey up to a 10-fold increase in fatty acid titer, and generate altered fatty acid profiles when expressed in a bacterial host strain. These in vitro-generated variant acyl-ACP TEs, in combination with 31 previously characterized natural variants isolated from diverse phylogenetic origins, were analyzed with a random forest classifier machine learning tool. The resulting quantitative model identified 22 amino acid residues, which define important structural features that determine the catalytic efficiency and substrate specificity of acyl-ACP TE.

2.
Plant Physiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537616

RESUMO

The hydrophobic cuticle is the first line of defense between aerial portions of plants and the external environment. On maize (Zea mays L.) silks, the cuticular cutin matrix is infused with cuticular waxes, consisting of a homologous series of very long-chain fatty acids (VLCFAs), aldehydes, and hydrocarbons. Together with VLC fatty-acyl-CoAs (VLCFA-CoAs), these metabolites serve as precursors, intermediates and end-products of the cuticular wax biosynthetic pathway. To deconvolute the potentially confounding impacts of the change in silk microenvironment and silk development on this pathway, we profiled cuticular waxes on the silks of the inbreds B73 and Mo17, and their reciprocal hybrids. Multivariate interrogation of these metabolite abundance data demonstrates that VLCFA-CoAs and total free VLCFAs are positively correlated with the cuticular wax metabolome, and this metabolome is primarily affected by changes in the silk microenvironment and plant genotype. Moreover, the genotype effect on the pathway explains the increased accumulation of cuticular hydrocarbons with a concomitant reduction in cuticular VLCFA accumulation on B73 silks, suggesting that the conversion of VLCFA-CoAs to hydrocarbons is more effective in B73 than Mo17. Statistical modeling of the ratios between cuticular hydrocarbons and cuticular VLCFAs reveals a significant role of precursor chain length in determining this ratio. This study establishes the complexity of the product-precursor relationships within the silk cuticular wax-producing network by dissecting both the impact of genotype and the allocation of VLCFA-CoA precursors to different biological processes, and demonstrates that longer chain VLCFA-CoAs are preferentially utilized for hydrocarbon biosynthesis.

3.
medRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076862

RESUMO

The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host.

4.
Front Plant Sci ; 14: 1204813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332695

RESUMO

Efforts to increase genetic gains in breeding programs of flowering plants depend on making genetic crosses. Time to flowering, which can take months to decades depending on the species, can be a limiting factor in such breeding programs. It has been proposed that the rate of genetic gain can be increased by reducing the time between generations by circumventing flowering through the in vitro induction of meiosis. In this review, we assess technologies and approaches that may offer a path towards meiosis induction, the largest current bottleneck for in vitro plant breeding. Studies in non-plant, eukaryotic organisms indicate that the in vitro switch from mitotic cell division to meiosis is inefficient and occurs at very low rates. Yet, this has been achieved with mammalian cells by the manipulation of a limited number of genes. Therefore, to experimentally identify factors that switch mitosis to meiosis in plants, it is necessary to develop a high-throughput system to evaluate a large number of candidate genes and treatments, each using large numbers of cells, few of which may gain the ability to induce meiosis.

5.
Front Plant Sci ; 14: 1126139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051080

RESUMO

We demonstrate two synthetic single-cell systems that can be used to better understand how the acquisition of an orphan gene can affect complex phenotypes. The Arabidopsis orphan gene, Qua-Quine Starch (QQS) has been identified as a regulator of carbon (C) and nitrogen (N) partitioning across multiple plant species. QQS modulates this important biotechnological trait by replacing NF-YB (Nuclear Factor Y, subunit B) in its interaction with NF-YC. In this study, we expand on these prior findings by developing Chlamydomonas reinhardtii and Saccharomyces cerevisiae strains, to refactor the functional interactions between QQS and NF-Y subunits to affect modulations in C and N allocation. Expression of QQS in C. reinhardtii modulates C (i.e., starch) and N (i.e., protein) allocation by affecting interactions between NF-YC and NF-YB subunits. Studies in S. cerevisiae revealed similar functional interactions between QQS and the NF-YC homolog (HAP5), modulating C (i.e., glycogen) and N (i.e., protein) allocation. However, in S. cerevisiae both the NF-YA (HAP2) and NF-YB (HAP3) homologs appear to have redundant functions to enable QQS and HAP5 to affect C and N allocation. The genetically tractable systems that developed herein exhibit the plasticity to modulate highly complex phenotypes.

6.
Front Mol Biosci ; 10: 1117921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006614

RESUMO

Acetyl-CoA synthetase (ACS) is one of several enzymes that generate the key metabolic intermediate, acetyl-CoA. In microbes and mammals ACS activity is regulated by the post-translational acetylation of a key lysine residue. ACS in plant cells is part of a two-enzyme system that maintains acetate homeostasis, but its post-translational regulation is unknown. This study demonstrates that the plant ACS activity can be regulated by the acetylation of a specific lysine residue that is positioned in a homologous position as the microbial and mammalian ACS sequences that regulates ACS activity, occurring in the middle of a conserved motif, near the carboxyl-end of the protein. The inhibitory effect of the acetylation of residue Lys-622 of the Arabidopsis ACS was demonstrated by site-directed mutagenesis of this residue, including its genetic substitution with the non-canonical N-ε-acetyl-lysine residue. This latter modification lowered the catalytic efficiency of the enzyme by a factor of more than 500-fold. Michaelis-Menten kinetic analysis of the mutant enzyme indicates that this acetylation affects the first half-reaction of the ACS catalyzed reaction, namely, the formation of the acetyl adenylate enzyme intermediate. The post-translational acetylation of the plant ACS could affect acetate flux in the plastids and overall acetate homeostasis.

7.
Front Plant Sci ; 14: 1093358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875559

RESUMO

Research strategies that combine molecular data from multiple levels of genome expression (i.e., multi-omics data), often referred to as a systems biology strategy, has been advocated as a route to discovering gene functions. In this study we conducted an evaluation of this strategy by combining lipidomics, metabolite mass-spectral imaging and transcriptomics data from leaves and roots in response to mutations in two AuTophaGy-related (ATG) genes of Arabidopsis. Autophagy is an essential cellular process that degrades and recycles macromolecules and organelles, and this process is blocked in the atg7 and atg9 mutants that were the focus of this study. Specifically, we quantified abundances of ~100 lipids and imaged the cellular locations of ~15 lipid molecular species and the relative abundance of ~26,000 transcripts from leaf and root tissues of WT, atg7 and atg9 mutant plants, grown either in normal (nitrogen-replete) and autophagy-inducing conditions (nitrogen-deficient). The multi-omics data enabled detailed molecular depiction of the effect of each mutation, and a comprehensive physiological model to explain the consequence of these genetic and environmental changes in autophagy is greatly facilitated by the a priori knowledge of the exact biochemical function of the ATG7 and ATG9 proteins.

9.
Sci Rep ; 12(1): 13235, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918413

RESUMO

Eukaryotes express a multi-component fatty acid elongase to produce very long chain fatty acids (VLCFAs), which are building blocks of diverse lipids. Elongation is achieved by cyclical iteration of four reactions, the first of which generates a new carbon-carbon bond, elongating the acyl-chain. This reaction is catalyzed by either ELONGATION DEFECTIVE LIKE (ELO) or 3-ketoacyl-CoA synthase (KCS) enzymes. Whereas plants express both ELO and KCS enzymes, other eukaryotes express only ELOs. We explored the Zea mays KCS enzymatic redundancies by expressing each of the 26 isozymes in yeast strains that lacked endogenous ELO isozymes. Expression of the 26 maize KCS isozymes in wild-type, scelo2 or scelo3 single mutants did not affect VLCFA profiles. However, a complementation screen of each of the 26 KCS isozymes revealed five that were capable of complementing the synthetically lethal scelo2; scelo3 double mutant. These rescued strains express novel VLCFA profiles reflecting the different catalytic capabilities of the KCS isozymes. These novel strains offer a platform to explore the relationship between VLCFA profiles and cellular physiology.


Assuntos
Isoenzimas , Saccharomyces cerevisiae , Carbono/metabolismo , Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Metabolites ; 12(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35888701

RESUMO

Wax esters are widely distributed among microbes, plants, and mammals, and they serve protective and energy storage functions. Three classes of enzymes catalyze the reaction between a fatty acyl alcohol and a fatty acyl-CoA, generating wax esters. Multiple isozymes of two of these enzyme classes, the membrane-bound O-acyltransferase class of wax synthase (WS) and the bifunctional wax synthase/diacylglycerol acyl transferase (WSD), co-exist in plants. Although WSD enzymes are known to produce the wax esters of the plant cuticle, the functionality of plant WS enzymes is less well characterized. In this study, we investigated the phylogenetic relationships among the 12 WS and 11 WSD isozymes that occur in Arabidopsis, and established two in vivo heterologous expression systems, in the yeast Saccharomyces cerevisiae and in Arabidopsis seeds to investigate the catalytic abilities of the WS enzymes. These two refactored wax assembly chassis were used to demonstrate that WS isozymes show distinct differences in the types of esters that can be assembled. We also determined the cellular and subcellular localization of two Arabidopsis WS isozymes. Additionally, using publicly available Arabidopsis transcriptomics data, we identified the co-expression modules of the 12 Arabidopsis WS coding genes. Collectively, these analyses suggest that WS genes may function in cuticle assembly and in supporting novel photosynthetic function(s).

11.
Front Mol Biosci ; 9: 896226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720111

RESUMO

The aerobic, thermophilic Actinobacterium, Thermobifida fusca has been proposed as an organism to be used for the efficient conversion of plant biomass to fatty acid-derived precursors of biofuels or biorenewable chemicals. Despite the potential of T. fusca to catabolize plant biomass, there is remarkably little data available concerning the natural ability of this organism to produce fatty acids. Therefore, we determined the fatty acids that T. fusca produces when it is grown on different carbon sources (i.e., glucose, cellobiose, cellulose and avicel) and at two different growth temperatures, namely at the optimal growth temperature of 50°C and at a suboptimal temperature of 37°C. These analyses establish that T. fusca produces a combination of linear and branched chain fatty acids (BCFAs), including iso-, anteiso-, and 10-methyl BCFAs that range between 14- and 18-carbons in length. Although different carbon sources and growth temperatures both quantitatively and qualitatively affect the fatty acid profiles produced by T. fusca, growth temperature is the greater modifier of these traits. Additionally, genome scanning enabled the identification of many of the fatty acid biosynthetic genes encoded by T. fusca.

12.
Metabolites ; 12(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208263

RESUMO

Autophagy is a conserved mechanism among eukaryotes that degrades and recycles cytoplasmic components. Autophagy is known to influence the plant metabolome, including lipid content; however, its impact on the plant lipidome is not fully understood, and most studies have analyzed a single or few mutants defective in autophagy. To gain more insight into the effect of autophagy on lipid concentrations and composition, we quantitatively profiled glycerolipids from multiple Arabidopsis thaliana mutants altered in autophagy and compared them with wild-type seedlings under nitrogen replete (+N; normal growth) and nitrogen starvation (-N; autophagy inducing) conditions. Mutants include those in genes of the core autophagy pathway, together with other genes that have been reported to affect autophagy. Using Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-MS), we imaged the cellular distribution of specific lipids in situ and demonstrated that autophagy and nitrogen treatment did not affect their spatial distribution within Arabidopsis seedling leaves. We observed changes, both increases and decreases, in the relative amounts of different lipid species in the mutants compared to WT both in +N and -N conditions, although more changes were seen in -N conditions. The relative amounts of polyunsaturated and very long chain lipids were significantly reduced in autophagy-disrupted mutants compared to WT plants. Collectively, our results provide additional evidence that autophagy affects plant lipid content and that autophagy likely affects lipid properties such as chain length and unsaturation.

13.
Plant Direct ; 5(4): e00322, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33969255

RESUMO

The extensive collection of glossy (gl) and eceriferum (cer) mutants of maize and Arabidopsis have proven invaluable in dissecting the branched metabolic pathways that support cuticular lipid deposition. This bifurcated pathway integrates a fatty acid elongation-decarbonylative branch and a fatty acid elongation-reductive branch, which collectively has the capacity to generate hundreds of cuticular lipid metabolites. In this study, a combined transgenic and biochemical strategy was implemented to explore and compare the physiological function of three homologous genes, Gl2, Gl2-like, and CER2, in the context of this branched pathway. These biochemical characterizations integrated new extraction chromatographic procedures with high spatial resolution mass spectrometric imaging methods to profile the cuticular lipids on developing floral tissues transgenically expressing these transgenes in wild-type or cer2 mutant lines of Arabidopsis. Collectively, these datasets establish that both the maize Gl2 and Gl2-like genes are functional homologs of the Arabidopsis CER2 gene. In addition, the dynamic distribution of cuticular lipid deposition follows distinct floral organ localization patterns indicating that the fatty acid elongation-decarbonylative branch of the pathway is differentially localized from the fatty acid elongation-reductive branch of the pathway.

14.
Plant Physiol ; 185(4): 1595-1616, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33585860

RESUMO

Nectar is a primary reward mediating plant-animal mutualisms to improve plant fitness and reproductive success. Four distinct trichomatic nectaries develop in cotton (Gossypium hirsutum), one floral and three extrafloral, and the nectars they secrete serve different purposes. Floral nectar attracts bees for promoting pollination, while extrafloral nectar attracts predatory insects as a means of indirect protection from herbivores. Cotton therefore provides an ideal system for contrasting mechanisms of nectar production and nectar composition between different nectary types. Here, we report the transcriptome and ultrastructure of the four cotton nectary types throughout development and compare these with the metabolomes of secreted nectars. Integration of these datasets supports specialization among nectary types to fulfill their ecological niche, while conserving parallel coordination of the merocrine-based and eccrine-based models of nectar biosynthesis. Nectary ultrastructures indicate an abundance of rough endoplasmic reticulum positioned parallel to the cell walls and a profusion of vesicles fusing to the plasma membranes, supporting the merocrine model of nectar biosynthesis. The eccrine-based model of nectar biosynthesis is supported by global transcriptomics data, which indicate a progression from starch biosynthesis to starch degradation and sucrose biosynthesis and secretion. Moreover, our nectary global transcriptomics data provide evidence for novel metabolic processes supporting de novo biosynthesis of amino acids secreted in trace quantities in nectars. Collectively, these data demonstrate the conservation of nectar-producing models among trichomatic and extrafloral nectaries.


Assuntos
Produtos Agrícolas/metabolismo , Flores/metabolismo , Gossypium/metabolismo , Néctar de Plantas/biossíntese , Tricomas/metabolismo , Vias Biossintéticas
15.
Plant Physiol ; 183(3): 840-853, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32430462

RESUMO

Plant epidermal cells express unique molecular machinery that juxtapose the assembly of intracellular lipid components and the unique extracellular cuticular lipids that are unidirectionally secreted to plant surfaces. In maize (Zea mays), mutations at the glossy2 (gl2) locus affect the deposition of extracellular cuticular lipids. Sequence-based genome scanning identified a new Gl2 homolog in the maize genome, namely Gl2-like Both the Gl2-like and Gl2 genes are members of the BAHD superfamily of acyltransferases, with close sequence similarity to the Arabidopsis (Arabidopsis thaliana) CER2 gene. Transgenic experiments demonstrated that Gl2-like and Gl2 functionally complement the Arabidopsis cer2 mutation, with differential influences on the cuticular lipids and the lipidome of the plant, particularly affecting the longer alkyl chain acyl lipids, especially at the 32-carbon chain length. Site-directed mutagenesis of the putative BAHD catalytic HXXXDX-motif indicated that Gl2-like requires this catalytic capability to fully complement the cer2 function, but Gl2 can accomplish complementation without the need for this catalytic motif. These findings demonstrate that Gl2 and Gl2-like overlap in their cuticular lipid function, but have evolutionarily diverged to acquire nonoverlapping functions.


Assuntos
Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo , Zea mays/genética , Genes de Plantas , Variação Genética , Mutação , Zea mays/metabolismo
16.
Metabolites ; 10(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455856

RESUMO

Floral nectar is a rich secretion produced by the nectary gland and is offered as reward to attract pollinators leading to improved seed set. Nectars are composed of a complex mixture of sugars, amino acids, proteins, vitamins, lipids, organic and inorganic acids. This composition is influenced by several factors, including floral morphology, mechanism of nectar secretion, time of flowering, and visitation by pollinators. The objective of this study was to determine the contributions of flowering time, plant phylogeny, and pollinator selection on nectar composition in Nicotiana. The main classes of nectar metabolites (sugars and amino acids) were quantified using gas chromatography/mass spectrometric analytical platforms to identify differences among fifteen Nicotiana species representing day- and night-flowering plants from ten sections of the genus that are visited by five different primary pollinators. The nectar metabolomes of different Nicotiana species can predict the feeding preferences of the target pollinator(s) of each species, and the nectar sugars (i.e., glucose, fructose, and sucrose) are a distinguishing feature of Nicotiana species phylogeny. Moreover, comparative statistical analysis indicate that pollinators are a stronger determinant of nectar composition than plant phylogeny.

17.
Plant Physiol ; 183(2): 517-529, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32245791

RESUMO

Plant fatty acid biosynthesis occurs in both plastids and mitochondria. Here, we report the identification and characterization of Arabidopsis (Arabidopsis thaliana) genes encoding three enzymes shared between the mitochondria- and plastid-localized type II fatty acid synthase systems (mtFAS and ptFAS, respectively). Two of these enzymes, ß-ketoacyl-acyl carrier protein (ACP) reductase and enoyl-ACP reductase, catalyze two of the reactions that constitute the core four-reaction cycle of the FAS system, which iteratively elongates the acyl chain by two carbon atoms per cycle. The third enzyme, malonyl-coenzyme A:ACP transacylase, catalyzes the reaction that loads the mtFAS system with substrate by malonylating the phosphopantetheinyl cofactor of ACP. GFP fusion experiments revealed that the these enzymes localize to both chloroplasts and mitochondria. This localization was validated by characterization of mutant alleles, which were rescued by transgenes expressing enzyme variants that were retargeted only to plastids or only to mitochondria. The singular retargeting of these proteins to plastids rescued the embryo lethality associated with disruption of the essential ptFAS system, but these rescued plants displayed phenotypes typical of the lack of mtFAS function, including reduced lipoylation of the H subunit of the glycine decarboxylase complex, hyperaccumulation of glycine, and reduced growth. However, these latter traits were reversible in an elevated-CO2 atmosphere, which suppresses mtFAS-associated photorespiration-dependent chemotypes. Sharing enzymatic components between mtFAS and ptFAS systems constrains the evolution of these nonredundant fatty acid biosynthetic machineries.


Assuntos
Arabidopsis/metabolismo , Ácido Graxo Sintases/metabolismo , Mitocôndrias/metabolismo , 3-Oxoacil-(Proteína Carreadora de Acil) Redutase/genética , 3-Oxoacil-(Proteína Carreadora de Acil) Redutase/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Glicina/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Plastídeos/metabolismo
18.
Plant Physiol ; 183(2): 547-557, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32094306

RESUMO

Acyl carrier protein (ACP) is a highly conserved cofactor protein that is required by Type II fatty acid synthases (FASs). Here, we demonstrate that up to three mitochondrial ACP (mtACP) isoforms support the Arabidopsis (Arabidopsis thaliana) mitochondrially localized Type II FAS. The physiological importance of the three mtACPs was evaluated by characterizing the single, double, and triple mutants. The mtACP1 (At2g44620), mtACP2 (At1g65290), and mtACP3 (At5g47630) single mutants showed no discernible morphological growth phenotype. Functional redundancy among the three mtACPs was indicated by the embryo-lethal phenotype associated with simultaneous loss of all three mtACP genes. Characterization of all double mutant combinations revealed that although the mtacp1 mtacp3 and mtacp2 mtacp3 double mutant combinations showed no observable growth defect, the mtacp1 mtacp2 double mutant was viable but displayed delayed growth, reduced levels of posttranslationally lipoylated mitochondrial proteins, hyperaccumulation of photorespiratory Gly, and reduced accumulation of many intermediates in central metabolism. These alterations were partially reversed when the mtacp1 mtacp2 double mutant plants were grown in a nonphotorespiratory condition (i.e. 1% CO2 atmosphere) or in the presence of 2% Suc. In summary, mtACP, as a key component of mitochondrial fatty acid biosynthesis, is important in generating the fatty acid precursor of lipoic acid biosynthesis. Thus, the incomplete lipoylation of mitochondrial proteins in mtacp mutants, particularly Gly decarboxylase, affects the recovery of photorespiratory carbon, and this appears to be critical during embryogenesis.


Assuntos
Proteína de Transporte de Acila/metabolismo , Ácido Graxo Sintases/metabolismo , Isoformas de Proteínas/metabolismo , Proteína de Transporte de Acila/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Graxo Sintase Tipo II , Ácido Graxo Sintases/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética
19.
Front Mol Biosci ; 7: 615614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511159

RESUMO

Acyl-CoA carboxylases (AcCCase) are biotin-dependent enzymes that are capable of carboxylating more than one short chain acyl-CoA substrate. We have conducted structural and kinetic analyses of such an AcCCase from Thermobifida fusca YX, which exhibits promiscuity in carboxylating acetyl-CoA, propionyl-CoA, and butyryl-CoA. The enzyme consists of two catalytic subunits (TfAcCCA and TfAcCCB) and a non-catalytic subunit, TfAcCCE, and is organized in quaternary structure with a A6B6E6 stoichiometry. Moreover, this holoenzyme structure appears to be primarily assembled from two A3 and a B6E6 subcomplexes. The role of the TfAcCCE subunit is to facilitate the assembly of the holoenzyme complex, and thereby activate catalysis. Based on prior studies of an AcCCase from Streptomyces coelicolor, we explored whether a conserved Asp residue in the TfAcCCB subunit may have a role in determining the substrate selectivity of these types of enzymes. Mutating this D427 residue resulted in alterations in the substrate specificity of the TfAcCCase, increasing proficiency for carboxylating acetyl-CoA, while decreasing carboxylation proficiency with propionyl-CoA and butyryl-CoA. Collectively these results suggest that residue D427 of AcCCB subunits is an important, but not sole determinant of the substrate specificity of AcCCase enzymes.

20.
Plant Physiol ; 182(2): 756-775, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792149

RESUMO

Arabidopsis (Arabidopsis thaliana), like most dicotyledonous plants, expresses a multicomponent, heteromeric acetyl-CoA carboxylase (htACCase), which catalyzes the generation of the malonyl-CoA precursor of de novo fatty acid biosynthesis. This enzyme consists of four catalytic subunits: biotin carboxylase (BC), carboxyltransferase (CT)-α, CT-ß, and biotin carboxyl carrier protein (BCCP1 or BCCP2). By coexpressing combinations of components in a bacterial expression system, we demonstrate noncatalytic BADCs facilitate the assembly and activation of BCCP-BADC-BC subcomplexes catalyzing the bicarbonate-dependent hydrolysis of ATP, which is the first half-reaction catalyzed by the htACCase enzyme. Although BADC proteins do not directly impact formation of the CT-αß subcomplex, the BADC-facilitated BCCP-BADC-BC subcomplex can more readily interact with the CT-αß subcomplex to facilitate the generation of malonyl-CoA. The Arabidopsis genome encodes three BADC isoforms (BADC1, BADC2, and BADC3), and BADC2 and BADC3 (rather than BADC1), in combination with BCCP1, best support this quaternary-structural organization and catalytic activation of the htACCase enzyme. Physiological genetic studies validate these attributes as Arabidopsis double mutants singularly expressing BADC2, BADC3, or BADC1 present increasingly greater deleterious impacts on morphological and biochemical phenotypes. Specifically, plants expressing only BADC2 develop normally, plants only expressing BADC3 suffer a stunted root-growth phenotype, and plants expressing only BADC1 are embryo-lethal. The latter phenotype may also be associated with the distinct suborganelle localization of BADC1 in plastids as compared to the localization of the other two BADC homologs. These finding can inspire novel strategies to improve the biological sources of fats and oils for dietary and industrial applications.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas/fisiologia , Plastídeos/metabolismo , Domínios Proteicos/fisiologia , Acetil-CoA Carboxilase/genética , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Biotina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Catálise , Domínio Catalítico , Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...