Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Brain Res ; 1123(1): 216-225, 2006 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-17078933

RESUMO

Human immunodeficiency virus (HIV)-1 infection of the central nervous system occurs in the vast majority of HIV-infected patients. HIV-associated dementia (HAD) represents the most severe form of HIV-related neuropsychiatric impairment and is associated with neuropathology involving HIV proteins and activation of proinflammatory cytokine circuits. Interferon-gamma (IFN-gamma) activates the JAK/STAT1 pathway, a key regulator of inflammatory and apoptotic signaling, and is elevated in HIV-1-infected brains progressing to HAD. Recent reports suggest green tea-derived (-)-epigallocatechin-3-gallate (EGCG) can attenuate neuronal damage mediated by this pathway in conditions such as brain ischemia. In order to investigate the therapeutic potential of EGCG to mitigate the neuronal damage characteristic of HAD, IFN-gamma was evaluated for its ability to enhance well-known neurotoxic properties of HIV-1 proteins gp120 and Tat in primary neurons and mice. Indeed, IFN-gamma enhanced the neurotoxicity of gp120 and Tat via increased JAK/STAT signaling. Additionally, primary neurons pretreated with a JAK1 inhibitor, or those derived from STAT1-deficient mice, were largely resistant to the IFN-gamma-enhanced neurotoxicity of gp120 and Tat. Moreover, EGCG treatment of primary neurons from normal mice reduced IFN-gamma-enhanced neurotoxicity of gp120 and Tat by inhibiting JAK/STAT1 pathway activation. EGCG was also found to mitigate the neurotoxic properties of HIV-1 proteins in the presence of IFN-gamma in vivo. Taken together, these data suggest EGCG attenuates the neurotoxicity of IFN-gamma augmented neuronal damage from HIV-1 proteins gp120 and Tat both in vitro and in vivo. Thus EGCG may represent a novel natural copound for the prevention and treatment of HAD.


Assuntos
Complexo AIDS Demência/tratamento farmacológico , Catequina/análogos & derivados , HIV-1/imunologia , Interferon gama/metabolismo , Janus Quinases/metabolismo , Neurônios/enzimologia , Fármacos Neuroprotetores/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Complexo AIDS Demência/enzimologia , Complexo AIDS Demência/imunologia , Complexo AIDS Demência/patologia , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Catequina/uso terapêutico , Células Cultivadas , Feminino , Produtos do Gene tat/imunologia , Produtos do Gene tat/toxicidade , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/toxicidade , Interferon gama/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/patologia , Neurotoxinas/imunologia , Neurotoxinas/toxicidade , Fator de Transcrição STAT1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana
2.
J Neuroinflammation ; 2: 24, 2005 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-16259628

RESUMO

Microglia are innate immune cells of myeloid origin that take up residence in the central nervous system (CNS) during embryogenesis. While classically regarded as macrophage-like cells, it is becoming increasingly clear that reactive microglia play more diverse roles in the CNS. Microglial "activation" is often used to refer to a single phenotype; however, in this review we consider that a continuum of microglial activation exists, with phagocytic response (innate activation) at one end and antigen presenting cell function (adaptive activation) at the other. Where activated microglia fall in this spectrum seems to be highly dependent on the type of stimulation provided. We begin by addressing the classical roles of peripheral innate immune cells including macrophages and dendritic cells, which seem to define the edges of this continuum. We then discuss various types of microglial stimulation, including Toll-like receptor engagement by pathogen-associated molecular patterns, microglial challenge with myelin epitopes or Alzheimer's beta-amyloid in the presence or absence of CD40L co-stimulation, and Alzheimer disease "immunotherapy". Based on the wide spectrum of stimulus-specific microglial responses, we interpret these cells as immune cells that demonstrate remarkable plasticity following activation. This interpretation has relevance for neurodegenerative/neuroinflammatory diseases where reactive microglia play an etiological role; in particular viral/bacterial encephalitis, multiple sclerosis and Alzheimer disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...