Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-492138

RESUMO

Vaccines are a cornerstone in COVID-19 pandemic management. Here, we compare immune responses to and preclinical efficacy of the mRNA vaccine BNT162b2, an adenovirus-vectored spike vaccine, and the live-attenuated-virus vaccine candidate sCPD9 after single and double vaccination in Syrian hamsters. All regimens containing sCPD9 showed superior efficacy. The robust immunity elicited by sCPD9 was evident in a wide range of immune parameters after challenge with heterologous SARS-CoV-2 including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue. Our results demonstrate that use of live-attenuated vaccines may offer advantages over available COVID-19 vaccines, specifically when applied as booster, and may provide a solution for containment of the COVID-19 pandemic.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473180

RESUMO

RationaleIn face of the ongoing SARS-CoV-2 pandemic, effective and well-understood treatment options are still scarce. While vaccines have proven instrumental in fighting SARS-CoV-2, their efficacy is challenged by vaccine hesitancy, novel variants and short-lasting immunity. Therefore, understanding and optimization of therapeutic options remains essential. ObjectivesWe aimed at generating a deeper understanding on how currently used drugs, specifically dexamethasone and anti-SARS-CoV-2 antibodies, affect SARS-CoV-2 infection and host responses. Possible synergistic effects of both substances are investigated to evaluate combinatorial treatments. MethodsBy using two COVID-19 hamster models, pulmonary immune responses were analyzed to characterize effects of treatment with either dexamethasone, anti-SARS-CoV-2 spike monoclonal antibody or a combination of both. scRNA sequencing was employed to reveal transcriptional response to treatment on a single cell level. Measurements and main resultsDexamethasone treatment resulted in similar or increased viral loads compared to controls. Anti-SARS-CoV-2 antibody treatment alone or combined with dexamethasone successfully reduced pulmonary viral burden. Dexamethasone exhibited strong anti-inflammatory effects and prevented fulminant disease in a severe COVID-19-like disease model. Combination therapy showed additive benefits with both anti-viral and anti-inflammatory potency. Bulk and single-cell transcriptomic analyses confirmed dampened inflammatory cell recruitment into lungs upon dexamethasone treatment and identified a candidate subpopulation of neutrophils specifically responsive to dexamethasone. ConclusionsOur analyses i) confirm the anti-inflammatory properties and indicate possible modes of action for dexamethasone, ii) validate anti-viral effects of anti-SARS-CoV-2 antibody treatment, and iii) reveal synergistic effects of a combination therapy and can thus inform more effective COVID-19 therapies.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258481

RESUMO

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathogenesis, and it remains unclear if T cells also contribute to disease pathology. Here, we combined single-cell transcriptomics and proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated, CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Age-dependent generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. The proportion of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a correlated with clinical outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...