Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Xray Sci Technol ; 18(3): 251-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20714084

RESUMO

The spatial resolution of diagnostic Computed Tomography (CT) has increased substantially, and 3D isotropic sub-millimeter spatial resolution in both axial and helical scan modes is routinely available in the clinic. However, driven by advanced clinical applications, the pursuit for higher spatial resolution and free of aliasing artifacts in diagnostic CT has never stopped. A method to accommodate focal spot wobbling at an arbitrary number of projection views per gantry rotation in CT is presented and evaluated here. The method employs a beta-correction scheme in the row-wise fan-to-parallel rebinning to transform the native cone beam geometry into the cone-parallel geometry under which existing 3D weighted cone beam filtered backprojection algorithms can be utilized for image reconstruction. The experimental evaluation shows that the row-wise fan-to-parallel rebinning with the beta-correction can increase the quantitative in-plane spatial resolution (Modulation Transfer Function) substantially, while the visual spatial resolution can be enhanced significantly. Consequently, the architectural designers of CT scanners are no longer constrained to choosing the number of projection views per rotation determined by gantry geometry. Instead, they can choose the number of projection views per rotation to optimize the trade-offs between in-plane spatial resolution and noise characteristics. Therefore, the presented method is of practical relevance in the architectural design of state-of-the-art diagnostic CT.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Imagens de Fantasmas , Tungstênio
3.
Artigo em Inglês | MEDLINE | ID: mdl-19163264

RESUMO

A 3D weighting scheme have been proposed previously to reconstruct images at both helical and axial scans in stat-of-the-art volumetric CT scanners for diagnostic imaging. Such a 3D weighting can be implemented in the manner of either ray-driven or pixel-drive, depending on the available computation resources. An experimental study is conducted in this paper to evaluate the difference between the ray-driven and pixel-driven implementations of the 3D weighting from the perspective of image quality, while their computational complexity is analyzed theoretically. Computer simulated data and several phantoms, such as the helical body phantom and humanoid chest phantom, are employed in the experimental study, showing that both the ray-driven and pixel-driven 3D weighting provides superior image quality for diagnostic imaging in clinical applications. With the availability of image reconstruction engine at increasing computational power, it is believed that the pixel-driven 3D weighting will be dominantly employed in state-of-the-art volumetric CT scanners over clinical applications.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Gráficos por Computador , Simulação por Computador , Humanos , Imageamento Tridimensional , Modelos Estatísticos , Modelos Teóricos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica , Reprodutibilidade dos Testes , Espalhamento de Radiação , Tomografia Computadorizada por Raios X/instrumentação
4.
Phys Med Biol ; 51(4): 855-74, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16467583

RESUMO

Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 degrees) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK-type algorithms. Moreover, the experimental evaluation by clinical data verifies that the proposed 3D-weighted CB-FBP algorithm for image reconstruction in volumetric CT under helical source trajectory meets the challenges posed by diagnostic applications of volumetric CT imaging.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada Espiral/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Int J Biomed Imaging ; 2006: 45942, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-23165031

RESUMO

A three-dimensional (3D) weighted helical cone beam filtered backprojection (CB-FBP) algorithm (namely, original 3D weighted helical CB-FBP algorithm) has already been proposed to reconstruct images from the projection data acquired along a helical trajectory in angular ranges up to [0, 2 π]. However, an overscan is usually employed in the clinic to reconstruct tomographic images with superior noise characteristics at the most challenging anatomic structures, such as head and spine, extremity imaging, and CT angiography as well. To obtain the most achievable noise characteristics or dose efficiency in a helical overscan, we extended the 3D weighted helical CB-FBP algorithm to handle helical pitches that are smaller than 1: 1 (namely extended 3D weighted helical CB-FBP algorithm). By decomposing a helical over scan with an angular range of [0, 2π + Δß] into a union of full scans corresponding to an angular range of [0, 2π], the extended 3D weighted function is a summation of all 3D weighting functions corresponding to each full scan. An experimental evaluation shows that the extended 3D weighted helical CB-FBP algorithm can improve noise characteristics or dose efficiency of the 3D weighted helical CB-FBP algorithm at a helical pitch smaller than 1: 1, while its reconstruction accuracy and computational efficiency are maintained. It is believed that, such an efficient CB reconstruction algorithm that can provide superior noise characteristics or dose efficiency at low helical pitches may find its extensive applications in CT medical imaging.

6.
Phys Med Biol ; 50(16): 3889-905, 2005 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16077234

RESUMO

The original FDK algorithm proposed for cone beam (CB) image reconstruction under a circular source trajectory has been extensively employed in medical and industrial imaging applications. With increasing cone angle, CB artefacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few 'circular plus' trajectories have been proposed in the past to help the original FDK algorithm to reduce CB artefacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as head imaging, breast imaging, cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artefacts existing in the original FDK algorithm is the inconsistency between conjugate rays that are 180 degrees apart in view angle (namely conjugate ray inconsistency). The conjugate ray inconsistency is pixel dependent, varying dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artefacts that can be avoided if appropriate weighting strategies are exercised. Along with an experimental evaluation and verification, a three-dimensional (3D) weighted axial cone beam filtered backprojection (CB-FBP) algorithm is proposed in this paper for image reconstruction in volumetric CT under a circular source trajectory. Without extra trajectories supplemental to the circular trajectory, the proposed algorithm applies 3D weighting on projection data before 3D backprojection to reduce conjugate ray inconsistency by suppressing the contribution from one of the conjugate rays with a larger cone angle. Furthermore, the 3D weighting is dependent on the distance between the reconstruction plane and the central plane determined by the circular trajectory. The proposed 3D weighted axial CB-FBP algorithm can be implemented in either the native CB geometry or the so-called cone-parallel geometry. By taking the cone-parallel geometry as an example, the experimental evaluation shows that, up to a moderate cone angle corresponding to a detector dimension of 64 x 0.625 mm, the CB artefacts can be substantially suppressed by the proposed algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering and data manipulation efficiency, are maintained.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Artefatos , Cabeça/patologia , Humanos , Imageamento Tridimensional , Modelos Estatísticos , Modelos Teóricos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica , Espalhamento de Radiação , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...