Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184346

RESUMO

Fresnel zone plates (FZPs) are circular diffractive elements that operate as a lens for x-rays. They have gained interest in the field of laser-plasma physics due to their ability to achieve higher spatial resolution than pinholes. Their design and implementation are complicated by the fact that a significant amount of the x-rays passing through the FZP will not diffract (zeroth order) and present a background to the measurement. This background can be large and inhomogeneous depending on the geometric setup of the experiment. Here, we present calculations of the diffracted (first order) and un-diffracted (zeroth order) flux profiles, which makes it possible to optimize the contrast between the first order imaging rays and the zeroth order background. Calculations for the implementation of a central block in the FZP, designed to block the zeroth from the entire field of view, are also presented.

2.
Rev Sci Instrum ; 94(1): 013101, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725595

RESUMO

Two extended x-ray absorption fine structure flat crystal x-ray spectrometers (EFX's) were designed and built for high-resolution x-ray spectroscopy over a large energy range with flexible, on-shot energy dispersion calibration capabilities. The EFX uses a flat silicon [111] crystal in the reflection geometry as the energy dispersive optic covering the energy range of 6.3-11.4 keV and achieving a spectral resolution of 4.5 eV with a source size of 50 µm at 7.2 keV. A shot-to-shot configurable calibration filter pack and Bayesian inference routine were used to constrain the energy dispersion relation to within ±3 eV. The EFX was primarily designed for x-ray absorption fine structure (XAFS) spectroscopy and provides significant improvement to the Laboratory for Laser Energetics' OMEGA-60 XAFS experimental platform. The EFX is capable of performing extended XAFS measurements of multiple absorption edges simultaneously on metal alloys and x-ray absorption near-edge spectroscopy to measure the electron structure of compressed 3d transition metals.

3.
Phys Rev E ; 105(5-2): 055206, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706166

RESUMO

Laser-accelerated proton beams are applicable to several research areas within high-energy density science, including warm dense matter generation, proton radiography, and inertial confinement fusion, which all involve transport of the beam through matter. We report on experimental measurements of intense proton beam transport through plastic foam blocks. The intense proton beam was accelerated by the 10ps, 700J OMEGA EP laser irradiating a curved foil target, and focused by an attached hollow cone. The protons then entered the foam block of density 0.38g/cm^{3} and thickness 0.55 or 1.00mm. At the rear of the foam block, a Cu layer revealed the cross section of the intense beam via proton- and hot electron-induced Cu-K_{α} emission. Images of x-ray emission show a bright spot on the rear Cu film indicative of a forward-directed beam without major breakup. 2D fluid-PIC simulations of the transport were conducted using a unique multi-injection source model incorporating energy-dependent beam divergence. Along with postprocessed calculations of the Cu-K_{α} emission profile, simulations showed that protons retain their ballistic transport through the foam and are able to heat the foam up to several keV in temperature. The total experimental emission profile for the 1.0mm foam agrees qualitatively with the simulated profile, suggesting that the protons indeed retain their beamlike qualities.

4.
Rev Sci Instrum ; 92(3): 033701, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820094

RESUMO

Experiments performed at the Laboratory for Laser Energetics with a continuous-wave (cw) x-ray source and on the OMEGA and OMEGA EP Laser Systems [Boehly et al., Opt. Commun. 133, 495 (1997) and Waxer et al., Opt. Photonics News 16, 30 (2005)] have utilized a Fresnel zone plate (FZP) to obtain x-ray images with a spatial resolution as small as ∼1.5 µm. Such FZP images were obtained with a charge-coupled device or a framing camera at energies ranging from 4.5 keV to 6.7 keV using x-ray line emission from both the cw source and high-intensity, laser-beam-illuminated metal foils. In all cases, the resolution test results are determined from patterns and grids backlit by these sources. The resolutions obtained are shown to be due to a combination of the spectral content of the x-ray sources and detector resolution limited by the magnification of the images (14× to 22×). High-speed framing cameras were used to obtain FZP images with frame times as short as ∼30 ps. Double-shell implosions on OMEGA were backlit by laser-irradiated Fe foils, thus obtaining a framing-camera-limited, FZP-image resolution of ∼3 µm-4 µm.

5.
Appl Opt ; 60(36): 11104-11124, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201099

RESUMO

The multiterawatt (MTW) laser, built initially as the prototype front end for a petawatt laser system, is a 1053 nm hybrid system with gain from optical parametric chirped-pulse amplification (OPCPA) and Nd:glass. Compressors and target chambers were added, making MTW a complete laser facility (output energy up to 120 J, pulse duration from 20 fs to 2.8 ns) for studying high-energy-density physics and developing short-pulse laser technologies and target diagnostics. Further extensions of the laser support ultrahigh-intensity laser development of an all-OPCPA system and a Raman plasma amplifier. A short summary of the variety of scientific experiments conducted on MTW is also presented.

6.
Phys Rev E ; 102(5-1): 053210, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327091

RESUMO

High-energy-density (HED) experiments in convergent geometry are able to test physical models at pressures beyond hundreds of millions of atmospheres. The measurements from these experiments are generally highly integrated and require unique analysis techniques to procure quantitative information. This work describes a methodology to constrain the physics in convergent HED experiments by adapting the methods common to many other fields of physics. As an example, a mechanical model of an imploding shell is constrained by data from a thin-shelled direct-drive exploding-pusher experiment on the OMEGA laser system using Bayesian inference, resulting in the reconstruction of the shell dynamics and energy transfer during the implosion. The model is tested by analyzing synthetic data from a one-dimensional hydrodynamics code and is sampled using a Markov chain Monte Carlo to generate the posterior distributions of the model parameters. The goal of this work is to demonstrate a general methodology that can be used to draw conclusions from a wide variety of HED experiments.

7.
Phys Rev Lett ; 125(21): 215001, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274978

RESUMO

Energy flow and balance in convergent systems beyond petapascal energy densities controls the fate of late-stage stars and the potential for controlling thermonuclear inertial fusion ignition. Time-resolved x-ray self-emission imaging combined with a Bayesian inference analysis is used to describe the energy flow and the potential information stored in the rebounding spherical shock at 0.22 PPa (2.2 Gbar or billions of atmospheres pressure). This analysis, together with a simple mechanical model, describes the trajectory of the shell and the time history of the pressure at the fuel-shell interface, ablation pressure, and energy partitioning including kinetic energy of the shell and internal energy of the fuel. The techniques used here provide a fully self-consistent uncertainty analysis of integrated implosion data, a thermodynamic-path independent measurement of pressure in the petapascal range, and can be used to deduce the energy flow in a wide variety of implosion systems to petapascal energy densities.

8.
Phys Rev Lett ; 125(14): 145001, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064539

RESUMO

In experiments performed with the OMEGA EP laser system, magnetic field generation in double ablation fronts was observed. Proton radiography measured the strength, spatial profile, and temporal dynamics of self-generated magnetic fields as the target material was varied between plastic, aluminum, copper, and gold. Two distinct regions of magnetic field are generated in mid-Z targets-one produced by gradients from electron thermal transport and the second from radiation-driven gradients. Extended magnetohydrodynamic simulations including radiation transport reproduced key aspects of the experiment, including field generation and double ablation front formation.

9.
Sci Rep ; 10(1): 9415, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523004

RESUMO

Proton beams driven by chirped pulse amplified lasers have multi-picosecond duration and can isochorically and volumetrically heat material samples, potentially providing an approach for creating samples of warm dense matter with conditions not present on Earth. Envisioned on a larger scale, they could heat fusion fuel to achieve ignition. We have shown in an experiment that a kilojoule-class, multi-picosecond short pulse laser is particularly effective for heating materials. The proton beam can be focussed via target design to achieve exceptionally high flux, important for the applications mentioned. The laser irradiated spherically curved diamond-like-carbon targets with intensity 4 × 1018 W/cm2, producing proton beams with 3 MeV slope temperature. A Cu witness foil was positioned behind the curved target, and the gap between was either empty or spanned with a structure. With a structured target, the total emission of Cu Kα fluorescence was increased 18 fold and the emission profile was consistent with a tightly focussed beam. Transverse proton radiography probed the target with ps order temporal and 10 µm spatial resolution, revealing the fast-acting focussing electric field. Complementary particle-in-cell simulations show how the structures funnel protons to the tight focus. The beam of protons and neutralizing electrons induce the bright Kα emission observed and heat the Cu to 100 eV.

10.
Nat Commun ; 11(1): 1989, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332785

RESUMO

Superdense plasmas widely exist in planetary interiors and astrophysical objects such as brown-dwarf cores and white dwarfs. How atoms behave under such extreme-density conditions is not yet well understood, even in single-species plasmas. Here, we apply thermal density functional theory to investigate the radiation spectra of superdense iron-zinc plasma mixtures at mass densities of ρ = 250 to 2000 g cm-3 and temperatures of kT = 50 to 100 eV, accessible by double-shell-target implosions. Our ab initio calculations reveal two extreme atomic-physics phenomena-firstly, an interspecies radiative transition; and, secondly, the breaking down of the dipole-selection rule for radiative transitions in isolated atoms. Our first-principles calculations predict that for superdense plasma mixtures, both interatomic radiative transitions and dipole-forbidden transitions can become comparable to the normal intra-atomic Kα-emission signal. These physics phenomena were not previously considered in detail for extreme high-density plasma mixtures at super-high energy densities.

11.
Phys Rev E ; 97(6-1): 063208, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011604

RESUMO

Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot-dense-plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. The data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

12.
Phys Rev E ; 95(6-1): 063204, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709197

RESUMO

Picosecond time-resolved x-ray spectroscopy is used to measure the spectral line shift of the 1s2p-1s^{2} transition in He-like Al ions as a function of the instantaneous plasma conditions. The plasma temperature and density are inferred from the Al He_{α} complex using a nonlocal-thermodynamic-equilibrium atomic physics model. The experimental spectra show a linearly increasing redshift for electron densities of 1-5×10^{23}cm^{-3}. The measured line shifts are broadly consistent with a generalized analytic line-shift model based on calculations of a self-consistent field ion-sphere model.

13.
Rev Sci Instrum ; 88(4): 043110, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456236

RESUMO

We have built an absolutely calibrated, highly efficient, Bragg crystal spectrometer in von Hamos geometry. This zinc von Hamos spectrometer uses a crystal made from highly oriented pyrolytic graphite that is cylindrically bent along the non-dispersive axis. It is tuned to measure x-ray spectra in the 7-10 keV range and has been designed to be used on a Ten Inch Manipulator for the Omega and OmegaEP target chambers at the Laboratory for Laser Energetics in Rochester, USA. Significant shielding strategies and fluorescence mitigation have been implemented in addition to an imaging plate detector making it well suited for experiments in high-intensity environments. Here we present the design and absolute calibration as well as mosaicity and integrated reflectivity measurements.

14.
Rev Sci Instrum ; 87(11): 11E538, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910435

RESUMO

An ultrafast streaked extreme-ultraviolet (XUV) spectrometer (5-20 nm) was developed to measure the temperature dynamics in rapidly heated samples. Rapid heating makes it possible to create exotic states of matter that can be probed during their inertial confinement time-tens of picoseconds in the case of micron-sized targets. In contrast to other forms of pyrometry, where the temperature is inferred from bulk x-ray emission, XUV emission is restricted to the sample surface, allowing for a temperature measurement at the material-vacuum interface. The surface-temperature measurement constrains models for the release of high-energy-density material. Coupling the XUV spectrometer to an ultrafast (<2-ps) streak camera provided picosecond-time scale evolution of the surface-layer emission. Two high-throughput XUV spectrometers were designed to simultaneously measure the time-resolved and absolute XUV emission.

15.
Rev Sci Instrum ; 87(11): 11D504, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910626

RESUMO

A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu Kα1 line. To demonstrate the performance of the spectrometer under high-power conditions, Kα1,2 emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 1018 W/cm2. The ultimate goal is to couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed.

16.
Rev Sci Instrum ; 87(11): 11E312, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910646

RESUMO

A picosecond, time-resolved, x-ray spectroscopy platform was developed to study the thermal line emission from rapidly heated solid targets containing buried aluminum or iron layers. The targets were driven by high-contrast 1ω or 2ω laser pulses at focused intensities up to 1 × 1019 W/cm2. The experimental platform combines time-integrating and time-resolved x-ray spectrometers. Picosecond time resolution was achieved with a pair of ultrafast x-ray streak cameras coupled to high-throughput Hall spectrometers. Time-integrated spectra were collected on each shot to correct the streaked data for variations in x-ray photocathode spectral sensitivity. The time-integrated spectrometer uses three elliptical crystals to disperse x rays with energies between 800 and 2100 eV with moderate (E/ΔE ∼ 450) resolving power. The streaked spectrometers accept four interchangeable conical crystals with higher resolving power (E/ΔE ∼ 650) to measure the brightest thermal lines in the 1300 to 1700 eV spectral range.

17.
Phys Rev Lett ; 114(21): 215003, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066442

RESUMO

The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 µm) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4×10^{14} W/cm^{2}. The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code draco when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included.

18.
Nat Commun ; 5: 5785, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25503788

RESUMO

The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse--the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.

19.
Rev Sci Instrum ; 85(11): 11E501, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430343

RESUMO

A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si Heα line at ∼1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ∼7 cm in ∼100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ∼1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 µm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.

20.
Phys Rev Lett ; 113(10): 105003, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238366

RESUMO

Observations of magnetic reconnection between colliding plumes of magnetized laser-produced plasma are presented. Two counterpropagating plasma flows are created by irradiating oppositely placed plastic (CH) targets with 1.8-kJ, 2-ns laser beams on the Omega EP Laser System. The interaction region between the plumes is prefilled with a low-density background plasma and magnetized by an externally applied magnetic field, imposed perpendicular to the plasma flow, and initialized with an X-type null point geometry with B=0 at the midplane and B=8 T at the targets. The counterflowing plumes sweep up and compress the background plasma and the magnetic field into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing the first detailed observations of a stretched current sheet in laser-driven reconnection experiments. The dynamics of current sheet formation are in good agreement with first-principles particle-in-cell simulations that model the experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...