Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
3.
Exp Hematol ; 127: 40-51, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666355

RESUMO

Hematopoietic stem cells (HSCs) enable hematopoietic stem cell transplantation (HCT) through their ability to replenish the entire blood system. Proliferation of HSCs is linked to decreased reconstitution potential, and a precise regulation of actively dividing HSCs is thus essential to ensure long-term functionality. This regulation becomes important in the transplantation setting where HSCs undergo proliferation followed by a gradual transition to quiescence and homeostasis. Although mouse HSCs have been well studied under homeostatic conditions, the mechanisms regulating HSC activation under stress remain unclear. Here, we analyzed the different phases of regeneration after transplantation. We isolated bone marrow from mice at 8 time points after transplantation and examined the reconstitution dynamics and transcriptional profiles of stem and progenitor populations. We found that regenerating HSCs initially produced rapidly expanding progenitors and displayed distinct changes in fatty acid metabolism and glycolysis. Moreover, we observed molecular changes in cell cycle, MYC and mTOR signaling in both HSCs, and progenitor subsets. We used a decay rate model to fit the temporal transcription profiles of regenerating HSCs and identified genes with progressively decreased or increased expression after transplantation. These genes overlapped to a large extent with published gene sets associated with key aspects of HSC function, demonstrating the potential of this data set as a resource for identification of novel HSC regulators. Taken together, our study provides a detailed functional and molecular characterization of HSCs at different phases of regeneration and identifies a gene set associated with the transition from proliferation to quiescence.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea , Ciclo Celular/genética , Transdução de Sinais
4.
Bioinform Adv ; 3(1): vbad103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600847

RESUMO

Motivation: AliGater is an open-source framework to accelerate the development of bioinformatic pipelines for the analysis of large-scale, high-dimensional flow cytometry data. AliGater provides a Python package for automatic feature extraction workflows, as well as building blocks to construct analysis pipelines. Results: We illustrate the use of AliGater in a high-resolution flow cytometry-based genome-wide association study on 46 immune cell populations in 14 288 individuals. Availability and implementation: Source code and documentation at https://github.com/LudvigEk/aligater and https://aligater.readthedocs.io.

5.
Cell Rep Methods ; 3(5): 100475, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37323567

RESUMO

Phenotypic drug discovery (PDD) enables the target-agnostic generation of therapeutic drugs with novel mechanisms of action. However, realizing its full potential for biologics discovery requires new technologies to produce antibodies to all, a priori unknown, disease-associated biomolecules. We present a methodology that helps achieve this by integrating computational modeling, differential antibody display selection, and massive parallel sequencing. The method uses the law of mass action-based computational modeling to optimize antibody display selection and, by matching computationally modeled and experimentally selected sequence enrichment profiles, predict which antibody sequences encode specificity for disease-associated biomolecules. Applied to a phage display antibody library and cell-based antibody selection, ∼105 antibody sequences encoding specificity for tumor cell surface receptors expressed at 103-106 receptors/cell were discovered. We anticipate that this approach will be broadly applicable to molecular libraries coupling genotype to phenotype and to the screening of complex antigen populations for identification of antibodies to unknown disease-associated targets.


Assuntos
Neoplasias , Biblioteca de Peptídeos , Humanos , Antígenos , Anticorpos , Técnicas de Visualização da Superfície Celular
6.
medRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36993312

RESUMO

Human genetic variation has enabled the identification of several key regulators of fetal-to-adult hemoglobin switching, including BCL11A, resulting in therapeutic advances. However, despite the progress made, limited further insights have been obtained to provide a fuller accounting of how genetic variation contributes to the global mechanisms of fetal hemoglobin (HbF) gene regulation. Here, we have conducted a multi-ancestry genome-wide association study of 28,279 individuals from several cohorts spanning 5 continents to define the architecture of human genetic variation impacting HbF. We have identified a total of 178 conditionally independent genome-wide significant or suggestive variants across 14 genomic windows. Importantly, these new data enable us to better define the mechanisms by which HbF switching occurs in vivo. We conduct targeted perturbations to define BACH2 as a new genetically-nominated regulator of hemoglobin switching. We define putative causal variants and underlying mechanisms at the well-studied BCL11A and HBS1L-MYB loci, illuminating the complex variant-driven regulation present at these loci. We additionally show how rare large-effect deletions in the HBB locus can interact with polygenic variation to influence HbF levels. Our study paves the way for the next generation of therapies to more effectively induce HbF in sickle cell disease and ß-thalassemia.

8.
Blood ; 139(11): 1659-1669, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35007327

RESUMO

Stem cell transplantation is a cornerstone in the treatment of blood malignancies. The most common method to harvest stem cells for transplantation is by leukapheresis, requiring mobilization of CD34+ hematopoietic stem and progenitor cells (HSPCs) from the bone marrow into the blood. Identifying the genetic factors that control blood CD34+ cell levels could reveal new drug targets for HSPC mobilization. Here we report the first large-scale, genome-wide association study on blood CD34+ cell levels. Across 13 167 individuals, we identify 9 significant and 2 suggestive associations, accounted for by 8 loci (PPM1H, CXCR4, ENO1-RERE, ITGA9, ARHGAP45, CEBPA, TERT, and MYC). Notably, 4 of the identified associations map to CXCR4, showing that bona fide regulators of blood CD34+ cell levels can be identified through genetic variation. Further, the most significant association maps to PPM1H, encoding a serine/threonine phosphatase never previously implicated in HSPC biology. PPM1H is expressed in HSPCs, and the allele that confers higher blood CD34+ cell levels downregulates PPM1H. Through functional fine-mapping, we find that this downregulation is caused by the variant rs772557-A, which abrogates an MYB transcription factor-binding site in PPM1H intron 1 that is active in specific HSPC subpopulations, including hematopoietic stem cells, and interacts with the promoter by chromatin looping. Furthermore, PPM1H knockdown increases the proportion of CD34+ and CD34+90+ cells in cord blood assays. Our results provide the first large-scale analysis of the genetic architecture of blood CD34+ cell levels and warrant further investigation of PPM1H as a potential inhibition target for stem cell mobilization.


Assuntos
Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas , Antígenos CD34/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos
9.
Nat Commun ; 13(1): 151, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013207

RESUMO

Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.


Assuntos
Linfócitos B/patologia , DNA Intergênico/genética , Predisposição Genética para Doença , Mieloma Múltiplo/genética , Proteínas de Neoplasias/genética , Plasmócitos/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica , Linfócitos B/imunologia , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Cromatina/química , Cromatina/imunologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , DNA Intergênico/imunologia , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Humanos , Padrões de Herança , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/imunologia , Plasmócitos/imunologia , Polimorfismo Genético , Cultura Primária de Células , Locos de Características Quantitativas , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Medição de Risco , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/imunologia
11.
Blood Cancer Discov ; 2(5): 500-517, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34568833

RESUMO

Clonal hematopoiesis results from somatic mutations in cancer driver genes in hematopoietic stem cells. We sought to identify novel drivers of clonal expansion using an unbiased analysis of sequencing data from 84,683 persons and identified common mutations in the 5-methylcytosine reader, ZBTB33, as well as in YLPM1, SRCAP, and ZNF318. We also identified these mutations at low frequency in myelodysplastic syndrome patients. Zbtb33 edited mouse hematopoietic stem and progenitor cells exhibited a competitive advantage in vivo and increased genome-wide intron retention. ZBTB33 mutations potentially link DNA methylation and RNA splicing, the two most commonly mutated pathways in clonal hematopoiesis and MDS.


Assuntos
Hematopoiese Clonal , Síndromes Mielodisplásicas , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Camundongos , Síndromes Mielodisplásicas/genética , Splicing de RNA/genética , Fatores de Transcrição/genética
12.
Blood Cancer J ; 11(4): 76, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875642

RESUMO

Multiple myeloma (MM) is caused by the uncontrolled, clonal expansion of plasma cells. While there is epidemiological evidence for inherited susceptibility, the molecular basis remains incompletely understood. We report a genome-wide association study totalling 5,320 cases and 422,289 controls from four Nordic populations, and find a novel MM risk variant at SOHLH2 at 13q13.3 (risk allele frequency = 3.5%; odds ratio = 1.38; P = 2.2 × 10-14). This gene encodes a transcription factor involved in gametogenesis that is normally only weakly expressed in plasma cells. The association is represented by 14 variants in linkage disequilibrium. Among these, rs75712673 maps to a genomic region with open chromatin in plasma cells, and upregulates SOHLH2 in this cell type. Moreover, rs75712673 influences transcriptional activity in luciferase assays, and shows a chromatin looping interaction with the SOHLH2 promoter. Our work provides novel insight into MM susceptibility.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Mieloma Múltiplo/genética , Idoso , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa , Humanos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único
13.
Nat Commun ; 12(1): 1277, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627649

RESUMO

Therapeutic antibodies are transforming the treatment of cancer and autoimmune diseases. Today, a key challenge is finding antibodies against new targets. Phenotypic discovery promises to achieve this by enabling discovery of antibodies with therapeutic potential without specifying the molecular target a priori. Yet, deconvoluting the targets of phenotypically discovered antibodies remains a bottleneck; efficient deconvolution methods are needed for phenotypic discovery to reach its full potential. Here, we report a comprehensive investigation of a target deconvolution approach based on pooled CRISPR/Cas9. Applying this approach within three real-world phenotypic discovery programs, we rapidly deconvolute the targets of 38 of 39 test antibodies (97%), a success rate far higher than with existing approaches. Moreover, the approach scales well, requires much less work, and robustly identifies antibodies against the major histocompatibility complex. Our data establish CRISPR/Cas9 as a highly efficient target deconvolution approach, with immediate implications for the development of antibody-based drugs.


Assuntos
Edição de Genes , Anticorpos/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos
15.
Nature ; 586(7831): 769-775, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057200

RESUMO

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers1. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10-8), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.


Assuntos
Predisposição Genética para Doença/genética , Células-Tronco Hematopoéticas/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Neoplasias/genética , Neoplasias/patologia , Linhagem da Célula/genética , Autorrenovação Celular , Quinase do Ponto de Checagem 2/genética , Feminino , Humanos , Leucócitos/patologia , Masculino , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Risco , Homeostase do Telômero
16.
Leukemia ; 34(12): 3439, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32665696

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Leukemia ; 34(12): 3323-3337, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32555370

RESUMO

The fate options of hematopoietic stem cells (HSCs) include self-renewal, differentiation, migration, and apoptosis. HSCs self-renewal divisions in stem cells are required for rapid regeneration during tissue damage and stress, but how precisely intracellular calcium signals are regulated to maintain fate options in normal hematopoiesis is unclear. S100A6 knockout (KO) HSCs have reduced total cell numbers in the HSC compartment, decreased myeloid output, and increased apoptotic HSC numbers in steady state. S100A6KO HSCs had impaired self-renewal and regenerative capacity, not responding to 5-Fluorouracil. Our transcriptomic and proteomic profiling suggested that S100A6 is a critical HSC regulator. Intriguingly, S100A6KO HSCs showed decreased levels of phosphorylated Akt (p-Akt) and Hsp90, with an impairment of mitochondrial respiratory capacity and a reduction of mitochondrial calcium levels. We showed that S100A6 regulates intracellular and mitochondria calcium buffering of HSC upon cytokine stimulation and have demonstrated that Akt activator SC79 reverts the levels of intracellular and mitochondrial calcium in HSC. Hematopoietic colony-forming activity and the Hsp90 activity of S100A6KO are restored through activation of the Akt pathway. We show that p-Akt is the prime downstream mechanism of S100A6 in the regulation of HSC self-renewal by specifically governing mitochondrial metabolic function and Hsp90 protein quality.

18.
Blood Adv ; 4(10): 2172-2179, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32433745

RESUMO

The etiology of multiple myeloma (MM) is poorly understood. Summary data from genome-wide association studies (GWASs) of multiple phenotypes can be exploited in a Mendelian randomization (MR) phenome-wide association study (PheWAS) to search for factors influencing MM risk. We performed an MR-PheWAS analyzing 249 phenotypes, proxied by 10 225 genetic variants, and summary genetic data from a GWAS of 7717 MM cases and 29 304 controls. Odds ratios (ORs) per 1 standard deviation increase in each phenotype were estimated under an inverse variance weighted random effects model. A Bonferroni-corrected threshold of P = 2 × 10-4 was considered significant, whereas P < .05 was considered suggestive of an association. Although no significant associations with MM risk were observed among the 249 phenotypes, 28 phenotypes showed evidence suggestive of association, including increased levels of serum vitamin B6 and blood carnitine (P = 1.1 × 10-3) with greater MM risk and ω-3 fatty acids (P = 5.4 × 10-4) with reduced MM risk. A suggestive association between increased telomere length and reduced MM risk was also noted; however, this association was primarily driven by the previously identified risk variant rs10936599 at 3q26 (TERC). Although not statistically significant, increased body mass index was associated with increased risk (OR, 1.10; 95% confidence interval, 0.99-1.22), supporting findings from a previous meta-analysis of prospective observational studies. Our study did not provide evidence supporting any modifiable factors examined as having a major influence on MM risk; however, it provides insight into factors for which the evidence has previously been mixed.


Assuntos
Estudo de Associação Genômica Ampla , Mieloma Múltiplo , Humanos , Análise da Randomização Mendeliana , Mieloma Múltiplo/epidemiologia , Mieloma Múltiplo/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
19.
Cell Rep ; 31(8): 107684, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32460032

RESUMO

Acute myeloid leukemia (AML) is defined by an accumulation of immature myeloid blasts in the bone marrow. To identify key dependencies of AML stem cells in vivo, here we use a CRISPR-Cas9 screen targeting cell surface genes in a syngeneic MLL-AF9 AML mouse model and show that CXCR4 is a top cell surface regulator of AML cell growth and survival. Deletion of Cxcr4 in AML cells eradicates leukemia cells in vivo without impairing their homing to the bone marrow. In contrast, the CXCR4 ligand CXCL12 is dispensable for leukemia development in recipient mice. Moreover, expression of mutated Cxcr4 variants reveals that CXCR4 signaling is essential for leukemia cells. Notably, loss of CXCR4 signaling in leukemia cells leads to oxidative stress and differentiation in vivo. Taken together, our results identify CXCR4 signaling as essential for AML stem cells by protecting them from differentiation independent of CXCL12 stimulation.


Assuntos
Quimiocina CXCL12/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/metabolismo , Receptores CXCR4/metabolismo , Animais , Diferenciação Celular , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais
20.
Schizophr Res ; 218: 226-232, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31959509

RESUMO

Patients with schizophrenia exhibit a higher cardiovascular mortality compared to the general population which has been attributed to life-style factors, genetic susceptibility and antipsychotic medication. Recent echocardiographic studies have pointed to an association between clozapine treatment and reduced left ventricular ejection fraction (LVEF), a measure that has been inversely associated with adverse outcomes including all-cause mortality. Cardiovascular magnetic resonance (CMR) is considered the reference method for LVEF measurement. The aim of the present study was to investigate the LVEF in patients with schizophrenia on long-term treatment with antipsychotics and healthy controls. Twenty-nine adult patients with schizophrenia on long-term medication with antipsychotics and 27 age-, sex- and body mass index-matched healthy controls (mean ages 44 and 45 years, respectively) were recruited from outpatient psychiatric clinics in Uppsala, Sweden. The participants were interviewed and underwent physical examination, biochemical analyses, electrocardiogram and CMR. Men with schizophrenia on long-term antipsychotic treatment showed significantly lower LVEF than controls (p = 0.0076), whereas no such difference was evident among women (p = 0.44). Specifically, clozapine-treated male patients had 10.6% lower LVEF than male controls (p = 0.0064), whereas the LVEF was 5.5% below that of controls among male patients treated with non-clozapine antipsychotics (p = 0.047). Among medicated men with schizophrenia, we found significantly lower LVEF compared to healthy individuals, suggesting the need of routine cardiac monitoring in this patient group. This is the first study showing a significant negative association between treatment with non-clozapine antipsychotics and LVEF.


Assuntos
Antipsicóticos , Esquizofrenia , Adulto , Antipsicóticos/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Volume Sistólico , Suécia , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...