Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
GigaByte ; 2024: gigabyte105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239770

RESUMO

The snake pipefish, Entelurus aequoreus (Linnaeus, 1758), is a northern Atlantic fish inhabiting open seagrass environments that recently expanded its distribution range. Here, we present a highly contiguous, near chromosome-scale genome of E. aequoreus. The final assembly spans 1.6 Gbp in 7,391 scaffolds, with a scaffold N50 of 62.3 Mbp and L50 of 12. The 28 largest scaffolds (>21 Mbp) span 89.7% of the assembly length. A BUSCO completeness score of 94.1% and a mapping rate above 98% suggest a high assembly completeness. Repetitive elements cover 74.93% of the genome, one of the highest proportions identified in vertebrates. Our demographic modeling identified a peak in population size during the last interglacial period, suggesting the species might benefit from warmer water conditions. Our updated snake pipefish assembly is essential for future analyses of the morphological and molecular changes unique to the Syngnathidae.

2.
Commun Biol ; 5(1): 429, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534538

RESUMO

Bird-mediated seed dispersal is crucial for the regeneration and viability of ecosystems, often resulting in complex mutualistic species networks. Yet, how this mutualism drives the evolution of seed dispersing birds is still poorly understood. In the present study we combine whole genome re-sequencing analyses and morphometric data to assess the evolutionary processes that shaped the diversification of the Eurasian nutcracker (Nucifraga), a seed disperser known for its mutualism with pines (Pinus). Our results show that the divergence and phylogeographic patterns of nutcrackers resemble those of other non-mutualistic passerine birds and suggest that their early diversification was shaped by similar biogeographic and climatic processes. The limited variation in foraging traits indicates that local adaptation to pines likely played a minor role. Our study shows that close mutualistic relationships between bird and plant species might not necessarily act as a primary driver of evolution and diversification in resource-specialized birds.


Assuntos
Passeriformes , Pinus , Dispersão de Sementes , Animais , Ecossistema , Passeriformes/genética , Sementes/genética , Simbiose
3.
Mob DNA ; 12(1): 27, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836553

RESUMO

BACKGROUND: The majority of structural variation in genomes is caused by insertions of transposable elements (TEs). In mammalian genomes, the main TE fraction is made up of autonomous and non-autonomous non-LTR retrotransposons commonly known as LINEs and SINEs (Long and Short Interspersed Nuclear Elements). Here we present one of the first population-level analysis of TE insertions in a non-model organism, the giraffe. Giraffes are ruminant artiodactyls, one of the few mammalian groups with genomes that are colonized by putatively active LINEs of two different clades of non-LTR retrotransposons, namely the LINE1 and RTE/BovB LINEs as well as their associated SINEs. We analyzed TE insertions of both types, and their associated SINEs in three giraffe genome assemblies, as well as across a population level sampling of 48 individuals covering all extant giraffe species. RESULTS: The comparative genome screen identified 139,525 recent LINE1 and RTE insertions in the sampled giraffe population. The analysis revealed a drastically reduced RTE activity in giraffes, whereas LINE1 is still actively propagating in the genomes of extant (sub)-species. In concert with the extremely low activity of the giraffe RTE, we also found that RTE-dependent SINEs, namely Bov-tA and Bov-A2, have been virtually immobile in the last 2 million years. Despite the high current activity of the giraffe LINE1, we did not find evidence for the presence of currently active LINE1-dependent SINEs. TE insertion heterozygosity rates differ among the different (sub)-species, likely due to divergent population histories. CONCLUSIONS: The horizontally transferred RTE/BovB and its derived SINEs appear to be close to inactivation and subsequent extinction in the genomes of extant giraffe species. This is the first time that the decline of a TE family has been meticulously analyzed from a population genetics perspective. Our study shows how detailed information about past and present TE activity can be obtained by analyzing large-scale population-level genomic data sets.

4.
Genes (Basel) ; 12(9)2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34573329

RESUMO

Nemertea is a phylum consisting of 1300 mostly marine species. Nemertea is distinguished by an eversible muscular proboscis, and most of the species are venomous. Genomic resources for this phylum are scarce despite their value in understanding biodiversity. Here, we present genome size estimates of Nemertea based on flow cytometry and their relationship to different morphological and developmental traits. Ancestral genome size estimations were done across the nemertean phylogeny. The results increase the available genome size estimates for Nemertea three-fold. Our analyses show that Nemertea has a narrow genome size range (0.43-3.89 pg) compared to other phyla in Lophotrochozoa. A relationship between genome size and evolutionary rate, developmental modes, and habitat was found. Trait analyses show that the highest evolutionary rate of genome size is found in upper intertidal, viviparous species with direct development. Despite previous findings, body size in nemerteans was not correlated with genome size. A relatively small genome (1.18 pg) is assumed for the most recent common ancestor of all extant nemerteans. The results provide an important basis for future studies in nemertean genomics, which will be instrumental to understanding the evolution of this enigmatic and often neglected phylum.


Assuntos
Organismos Aquáticos/genética , Tamanho do Genoma , Invertebrados/genética , Animais , Tamanho Corporal/genética , Evolução Molecular , Filogenia , Especificidade da Espécie
5.
Biology (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35053022

RESUMO

Transposable elements (TEs) are an important source of genome plasticity across the tree of life. Drift and natural selection are important forces shaping TE distribution and accumulation. Fungi, with their multifaceted phenotypic diversity and relatively small genome size, are ideal models to study the role of TEs in genome evolution and their impact on the host's ecological and life history traits. Here we present an account of all TEs found in a high-quality reference genome of the lichen-forming fungus Umbilicaria pustulata, a macrolichen species comprising two climatic ecotypes: Mediterranean and cold temperate. We trace the occurrence of the newly identified TEs in populations along three elevation gradients using a Pool-Seq approach to identify TE insertions of potential adaptive significance. We found that TEs cover 21.26% of the 32.9 Mbp genome, with LTR Gypsy and Copia clades being the most common TEs. We identified 28 insertions displaying consistent insertion frequency differences between the two host ecotypes across the elevation gradients. Most of the highly differentiated insertions were located near genes, indicating a putative function. This pioneering study of the content and climate niche-specific distribution of TEs in a lichen-forming fungus contributes to understanding the roles of TEs in fungal evolution.

6.
Mar Drugs ; 18(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752210

RESUMO

Nemerteans (ribbon worms) employ toxins to subdue their prey, but research thus far has focused on the small-molecule components of mucus secretions and few protein toxins have been characterized. We carried out a preliminary proteotranscriptomic analysis of putative toxins produced by the hoplonemertean Amphiporus lactifloreus (Hoplonemertea, Amphiporidae). No variants were found of known nemertean-specific toxin proteins (neurotoxins, cytotoxins, parbolysins or nemertides) but several toxin-like transcripts were discovered, expressed strongly in the proboscis, including putative metalloproteinases and sequences resembling sea anemone actitoxins, crown-of-thorn sea star plancitoxins, and multiple classes of inhibitor cystine knot/knottin family proteins. Some of these products were also directly identified in the mucus proteome, supporting their preliminary identification as secreted toxin components. Two new nemertean-typical toxin candidates could be described and were named U-nemertotoxin-1 and U-nemertotoxin-2. Our findings provide insight into the largely overlooked venom system of nemerteans and support a hypothesis in which the nemertean proboscis evolved in several steps from a flesh-melting organ in scavenging nemerteans to a flesh-melting and toxin-secreting venom apparatus in hunting hoplonemerteans.


Assuntos
Perfilação da Expressão Gênica , Invertebrados/genética , Invertebrados/metabolismo , Toxinas Marinhas/genética , Toxinas Marinhas/metabolismo , Proteoma , Proteômica , Transcriptoma , Animais , Bases de Dados Genéticas
7.
Gigascience ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32491162

RESUMO

Recent advances in genome sequencing technologies have simplified the generation of genome data and reduced the costs for genome assemblies, even for complex genomes like those of vertebrates. More practically oriented genomic courses can prepare university students for the increasing importance of genomic data used in biological and medical research. Low-cost third-generation sequencing technology, along with publicly available data, can be used to teach students how to process genomic data, assemble full chromosome-level genomes, and publish the results in peer-reviewed journals, or preprint servers. Here we outline experiences gained from 2 master's-level courses and discuss practical considerations for teaching hands-on genome assembly courses.


Assuntos
Genômica/educação , Universidades , Técnicas Genéticas , Genética/educação , Genoma , Genômica/métodos , Humanos
8.
GigaByte ; 2020: gigabyte6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36824592

RESUMO

Background: The common dragonet, Callionymus lyra, is one of three Callionymus species inhabiting the North Sea. All three species show strong sexual dimorphism. The males show strong morphological differentiation, e.g., species-specific colouration and size relations, while the females of different species have few distinguishing characters. Callionymus belongs to the 'benthic associated clade' of the order Syngnathiformes. The 'benthic associated clade' so far is not represented by genome data and serves as an important outgroup to understand the morphological transformation in 'long-snouted' syngnatiformes such as seahorses and pipefishes. Findings: Here, we present the chromosome-level genome assembly of C. lyra. We applied Oxford Nanopore Technologies' long-read sequencing, short-read DNBseq, and proximity-ligation-based scaffolding to generate a high-quality genome assembly. The resulting assembly has a contig N50 of 2.2 Mbp and a scaffold N50 of 26.7 Mbp. The total assembly length is 568.7 Mbp, of which over 538 Mbp were scaffolded into 19 chromosome-length scaffolds. The identification of 94.5% complete BUSCO genes indicates high assembly completeness. Additionally, we sequenced and assembled a multi-tissue transcriptome with a total length of 255.5 Mbp that was used to aid the annotation of the genome assembly. The annotation resulted in 19,849 annotated transcripts and identified a repeat content of 27.7%. Conclusions: The chromosome-level assembly of C. lyra provides a high-quality reference genome for future population genomic, phylogenomic, and phylogeographic analyses.

9.
Mob DNA ; 10: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30679961

RESUMO

BACKGROUND: Baleen whales (Mysticeti) are the largest animals on earth and their evolutionary history has been studied in detail, but some relationships still remain contentious. In particular, reconstructing the phylogenetic position of the gray whales (Eschrichtiidae) has been complicated by evolutionary processes such as gene flow and incomplete lineage sorting (ILS). Here, whole-genome sequencing data of the extant baleen whale radiation allowed us to identify transposable element (TE) insertions in order to perform phylogenomic analyses and measure germline insertion rates of TEs. Baleen whales exhibit the slowest nucleotide substitution rate among mammals, hence we additionally examined the evolutionary insertion rates of TE insertions across the genomes. RESULTS: In eleven whole-genome sequences representing the extant radiation of baleen whales, we identified 91,859 CHR-SINE insertions that were used to reconstruct the phylogeny with different approaches as well as perform evolutionary network analyses and a quantification of conflicting phylogenetic signals. Our results indicate that the radiation of rorquals and gray whales might not be bifurcating. The morphologically derived gray whales are placed inside the rorqual group, as the sister-species to humpback and fin whales. Detailed investigation of TE insertion rates confirm that a mutational slow down in the whale lineage is present but less pronounced for TEs than for nucleotide substitutions. CONCLUSIONS: Whole genome sequencing based detection of TE insertions showed that the speciation processes in baleen whales represent a rapid radiation. Large genome-scale TE data sets in addition allow to understand retrotransposition rates in non-model organisms and show the potential for TE calling methods to study the evolutionary history of species.

10.
Sci Adv ; 4(4): eaap9873, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29632892

RESUMO

Reconstructing the evolution of baleen whales (Mysticeti) has been problematic because morphological and genetic analyses have produced different scenarios. This might be caused by genomic admixture that may have taken place among some rorquals. We present the genomes of six whales, including the blue whale (Balaenoptera musculus), to reconstruct a species tree of baleen whales and to identify phylogenetic conflicts. Evolutionary multilocus analyses of 34,192 genome fragments reveal a fast radiation of rorquals at 10.5 to 7.5 million years ago coinciding with oceanic circulation shifts. The evolutionarily enigmatic gray whale (Eschrichtius robustus) is placed among rorquals, and the blue whale genome shows a high degree of heterozygosity. The nearly equal frequency of conflicting gene trees suggests that speciation of rorqual evolution occurred under gene flow, which is best depicted by evolutionary networks. Especially in marine environments, sympatric speciation might be common; our results raise questions about how genetic divergence can be established.


Assuntos
Balaenoptera/genética , Fluxo Gênico , Genoma , Genômica , Sequenciamento Completo do Genoma , Animais , Balaenoptera/classificação , Evolução Molecular , Variação Genética , Genômica/métodos , Filogenia , Densidade Demográfica
11.
Reprod Fertil Dev ; 30(5): 721-733, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29162213

RESUMO

The zona pellucida (ZP) is an extracellular matrix that surrounds mammalian oocytes. In eutherians it is formed from three or four proteins (ZP1, ZP2, ZP3, ZP4). In the few marsupials that have been studied, however, only three of these have been characterised (ZP2, ZP3, ZP4). Nevertheless, the composition in marsupials may be more complex, since a duplication of the ZP3 gene was recently described in one species. The aim of this work was to elucidate the ZP composition in marsupials and relate it to the evolution of the ZP gene family. For that, an in silico and molecular analysis was undertaken, focusing on two South American species (gray short-tailed opossum and common opossum) and five Australian species (brushtail possum, koala, Bennett's wallaby, Tammar wallaby and Tasmanian devil). This analysis identified the presence of ZP1 mRNA and mRNA from two or three paralogues of ZP3 in marsupials. Furthermore, evidence for ZP1 and ZP4 pseudogenes in the South American subfamily Didelphinae and for ZP3 pseudogenes in two marsupials is provided. In conclusion, two different composition models are proposed for marsupials: a model with four proteins (ZP1, ZP2 and ZP3 (two copies)) for the South American species and a model with six proteins (ZP1, ZP2, ZP3 (three copies) and ZP4) for the Australasian species.


Assuntos
Oócitos/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Glicoproteínas da Zona Pelúcida/metabolismo , Zona Pelúcida/metabolismo , Animais , Evolução Molecular , Feminino , Fertilização/fisiologia , Gambás , Filogenia , Glicoproteínas da Zona Pelúcida/genética
12.
Genome Biol Evol ; 10(1): 33-44, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29182740

RESUMO

The iconic Australasian kangaroos and wallabies represent a successful marsupial radiation. However, the evolutionary relationship within the two genera, Macropus and Wallabia, is controversial: mitochondrial and nuclear genes, and morphological data have produced conflicting scenarios regarding the phylogenetic relationships, which in turn impact the classification and taxonomy. We sequenced and analyzed the genomes of 11 kangaroos to investigate the evolutionary cause of the observed phylogenetic conflict. A multilocus coalescent analysis using ∼14,900 genome fragments, each 10 kb long, significantly resolved the species relationships between and among the sister-genera Macropus and Wallabia. The phylogenomic approach reconstructed the swamp wallaby (Wallabia) as nested inside Macropus, making this genus paraphyletic. However, the phylogenomic analyses indicate multiple conflicting phylogenetic signals in the swamp wallaby genome. This is interpreted as at least one introgression event between the ancestor of the genus Wallabia and a now extinct ghost lineage outside the genus Macropus. Additional phylogenetic signals must therefore be caused by incomplete lineage sorting and/or introgression, but available statistical methods cannot convincingly disentangle the two processes. In addition, the relationships inside the Macropus subgenus M. (Notamacropus) represent a hard polytomy. Thus, the relationships between tammar, red-necked, agile, and parma wallabies remain unresolvable even with whole-genome data. Even if most methods resolve bifurcating trees from genomic data, hard polytomies, incomplete lineage sorting, and introgression complicate the interpretation of the phylogeny and thus taxonomy.


Assuntos
Especiação Genética , Macropodidae/genética , Filogenia , Animais , Austrália , Genoma , Genoma Mitocondrial , Macropodidae/classificação , Mosaicismo
13.
Sci Rep ; 7(1): 16811, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196678

RESUMO

Reconstructing phylogeny from retrotransposon insertions is often limited by access to only a single reference genome, whereby support for clades that do not include the reference taxon cannot be directly observed. Here we have developed a new statistical framework that accounts for this ascertainment bias, allowing us to employ phylogenetically powerful retrotransposon markers to explore the radiation of the largest living marsupials, the kangaroos and wallabies of the genera Macropus and Wallabia. An exhaustive in silico screening of the tammar wallaby (Macropus eugenii) reference genome followed by experimental screening revealed 29 phylogenetically informative retrotransposon markers belonging to a family of endogenous retroviruses. We identified robust support for the enigmatic swamp wallaby (Wallabia bicolor) falling within a paraphyletic genus, Macropus. Our statistical approach provides a means to test for incomplete lineage sorting and introgression/hybridization in the presence of the ascertainment bias. Using retrotransposons as "molecular fossils", we reveal one of the most complex patterns of hemiplasy yet identified, during the rapid diversification of kangaroos and wallabies. Ancestral state reconstruction incorporating the new retrotransposon phylogenetic information reveals multiple independent ecological shifts among kangaroos into more open habitats, coinciding with the Pliocene onset of increased aridification in Australia from ~3.6 million years ago.


Assuntos
Macropodidae/classificação , Macropodidae/genética , Retroelementos , Animais , Austrália , Viés , Evolução Molecular , Filogenia
14.
Genome Biol Evol ; 9(10): 2862-2878, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985298

RESUMO

Phylogenetic reconstruction from transposable elements (TEs) offers an additional perspective to study evolutionary processes. However, detecting phylogenetically informative TE insertions requires tedious experimental work, limiting the power of phylogenetic inference. Here, we analyzed the genomes of seven bear species using high-throughput sequencing data to detect thousands of TE insertions. The newly developed pipeline for TE detection called TeddyPi (TE detection and discovery for Phylogenetic Inference) identified 150,513 high-quality TE insertions in the genomes of ursine and tremarctine bears. By integrating different TE insertion callers and using a stringent filtering approach, the TeddyPi pipeline produced highly reliable TE insertion calls, which were confirmed by extensive in vitro validation experiments. Analysis of single nucleotide substitutions in the flanking regions of the TEs shows that these substitutions correlate with the phylogenetic signal from the TE insertions. Our phylogenomic analyses show that TEs are a major driver of genomic variation in bears and enabled phylogenetic reconstruction of a well-resolved species tree, despite strong signals for incomplete lineage sorting and introgression. The analyses show that the Asiatic black, sun, and sloth bear form a monophyletic clade, in which phylogenetic incongruence originates from incomplete lineage sorting. TeddyPi is open source and can be adapted to various TE and structural variation callers. The pipeline makes it possible to confidently extract thousands of TE insertions even from low-coverage genomes (∼10×) of nonmodel organisms. This opens new possibilities for biologists to study phylogenies and evolutionary processes as well as rates and patterns of (retro-)transposition and structural variation.


Assuntos
Elementos de DNA Transponíveis/genética , Genômica/métodos , Modelos Genéticos , Filogenia , Retroelementos/genética , Ursidae/classificação , Ursidae/genética , Algoritmos , Animais , Evolução Molecular , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese Insercional/genética , Recombinação Genética , Análise de Sequência de DNA
15.
Sci Rep ; 7: 46487, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422140

RESUMO

Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow.


Assuntos
Evolução Molecular , Fluxo Gênico , Genoma , Filogenia , Ursidae/genética , Animais
16.
Curr Biol ; 27(4): R137-R138, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28222288

RESUMO

It is not unexpected that a proposal, such as ours [1], of four new mammalian species stirs up controversy, as evident in the correspondence by Bercovitch et al.[2]. We appreciate that their concerns are unrelated to the quality of the genetic data, the methodological approach or analyses, but are focused on the interpretation. Thus, we provided an analysis of giraffe speciation based on genomic sequence data, and not just "another viewpoint on giraffe taxonomy" [2]. We maintain our perspective that there is not only one but four species of giraffe (Figure 1).


Assuntos
Girafas , Animais , Genômica , Mamíferos
17.
Mitochondrial DNA B Resour ; 2(1): 251-254, 2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33644382

RESUMO

Phylogenetic analyses of nuclear and mitochondrial genomes indicate that polar bears captured the brown bear mitochondrial genome 160,000 years ago, leading to an extinction of the original polar bear mitochondrial genome. However, mitochondrial DNA occasionally integrates into the nuclear genome, forming pseudogenes called numts (nuclear mitochondrial integrations). Screening the polar bear genome identified only 13 numts. Genomic analyses of two additional ursine bears and giant panda indicate that all except one of the discovered numts entered the bear lineage at least 14 million years ago. However, short read genome assemblies might lead to an under-representation of numts or other repetitive sequences. Our findings suggest low integration rates of numts in bears and a loss of the original polar bear mitochondrial genome.

18.
Curr Biol ; 26(18): 2543-2549, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27618261

RESUMO

Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild's giraffe into the Nubian giraffe, as well as Thornicroft's giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world's tallest mammal.


Assuntos
Especiação Genética , Girafas/classificação , Girafas/genética , África , Animais , DNA Mitocondrial/genética , Variação Genética , Tipagem de Sequências Multilocus , Filogenia
19.
Mob Genet Elements ; 6(1): e1119926, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066301

RESUMO

The third marsupial genome was sequenced from the Tasmanian devil (Sarcophilus harrisii), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the Long INterspersed Element 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the Short INterspersed Elements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25103427

RESUMO

We present the complete mitochondrial genome (accession number: LK995454) of an iconic Australian species, the eastern grey kangaroo (Macropus giganteus). The mitogenomic organization is consistent with other marsupials, encoding 13 protein-coding genes, 22 tRNA genes, 2 ribosomal RNA genes, an origin of light strand replication and a control region or D-loop. No repetitive sequences were detected in the control region. The M. giganteus mitogenome exemplifies a combination of tRNA gene order and structural peculiarities that appear to be unique to marsupials. We present a maximum likelihood phylogeny based on complete mitochondrial protein and RNA coding sequences that confirms the phylogenetic position of the grey kangaroo among macropodids.


Assuntos
Genoma Mitocondrial , Macropodidae/genética , Animais , Sequência de Bases , Macropodidae/classificação , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...