Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 123(39): 9585-96, 2001 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-11572679

RESUMO

Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).


Assuntos
Ânions/química , Espectrometria de Massas/métodos , Metano/análogos & derivados , Metano/química , Peróxidos/química , Radicais Livres/química , Modelos Químicos , Termodinâmica
2.
J Am Chem Soc ; 123(9): 1977-88, 2001 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-11456819

RESUMO

We have measured the infrared absorption spectrum of C(6)H(5), /X (2)A(1), in an Ar matrix at 10 K. The experimental frequencies (cm(-)(1)) and polarizations follow. a(1) modes: 3086, 3072, 3037, 1581, 1441, 1154, 1027, 997, 976, 605; b(1) modes: 972, 874, 706, 657, 416; b(2) modes: 3071, 3060, 1624, 1432, 1321, 1283, 1159, 1063, and 587. Three different methods have been used for the production of the phenyl radicals. Infrared absorption spectra of five deuterated isotopomers, C(6)D(5), p-C(6)H(4)D, p-C(6)HD(4), o-C(6)H(4)D, and m-C(6)H(4)D, were recorded to compare experimental frequency shifts with calculated (UB3LYP/cc-pVDZ) harmonic frequency shifts. The use of CO(2) or NO as internal standards enabled the experimental determination of absolute infrared intensities. The linear dichroism was measured with photooriented samples to establish experimental polarizations of each vibrational band. True gas-phase vibrational frequencies were estimated by considering the gas-to-matrix shifts and matrix inhomogeneous line broadening. The phenyl radical matrix frequencies listed above are within +/-1% of the gas-phase vibrational frequencies. The C(6)H(5) frequencies from this paper supersede our earlier values reported in J. Am. Chem. Soc. 1996, 118, 7400-7401. See also: http://ellison.colorado.edu/phenyl.

3.
Chemosphere ; 42(5-7): 663-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11219692

RESUMO

A single photon ionization, molecular beam sampling, reflectron time-of-flight mass spectrometer (SPI/MBTOFMS) has been developed and used to study pyrolysis products from a selection of biomass materials. Spectra are characterized by high resolution and decreased fragmentation compared to electron-impact ionization mass spectra from related molecular beam mass spectrometer systems equipped with quadrupole mass analyzers.


Assuntos
Biomassa , Espectrometria de Massas/métodos
5.
Environ Sci Technol ; 28(5): 816-22, 1994 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22191822
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...