Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(7): e0030723, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37272793

RESUMO

The genome of Ignatzschineria sp. strain RMDPL8A was sequenced and analyzed. This draft genome sequence was 2,175,527 bp long, with a GC content of 45.12% and 1,890 protein coding genes.

2.
Front Microbiol ; 13: 939984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992701

RESUMO

We reported our comparative observations on oligotrophs vs. copiotrophs from a hyper-alkaline and hypersaline habitat, Lonar Lake, situated in the Buldhana district of Maharashtra, India. Cell numbers of oligotrophic and copiotrophic microbes from the sediment were enumerated by the three-tube most probable number (MPN) method using an array of nutrient-rich and oligotrophic (≈10-20 mg carbon L-1) media offering simulated natural conditions of pH and salinity. A total of 50 strains from 15 different genera and 30 different species were isolated from the highest positive dilutions of MPN to identify the taxa of oligotrophs and copiotrophic microorganisms dominating in Lonar Lake. We did not get any true oligotrophs due to their adaptation to higher carbon levels during the isolation procedure. On the contrary, several true copiotrophs, which could not adapt and survive on a low-carbon medium, were isolated. It is also observed that changes in medium composition and nutrient level altered the selection of organisms from the same sample. Our data indicate that copiotrophic microorganisms dominate the eutrophic Lonar Lake, which is also supported by the past metagenomics studies from the same site. We also reported that quick depletion of carbon from oligotrophic medium worked as a limiting factor, inducing cell death after 2-3 generations and preventing the development of visible colonies on plates and sufficient optical density in liquid medium. Therefore, a long-term supply of low levels of carbon, followed by isolation on enriched media, can serve as a good strategy in isolation of novel taxa of microorganism, with industrial or environmental importance.

3.
Anaerobe ; 77: 102626, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35977655

RESUMO

The landfill is a convenient and affordable method of municipal solid waste (MSW) management. Landfill leachate contains a heavy load of pollutants and pathogens. Discharge of untreated leachate is the leading cause of surface and groundwater contamination and a threat to public and environmental health. To develop an efficient leachate treatment technology, an in-depth understanding of landfill chemistry and microbiology is essential. In the present manuscript, we conducted a comparative study of three different landfill leachate samples using cultivation-based and culture-independent molecular studies. We cultivated 85 species of aerobic, anaerobic bacteria and archaea from leachate represented by a total of 200 strains using extensive culturomics approaches. Twelve out of 200 cultivated strains of bacteria showed very low 16S rRNA gene sequence similarity (84-98.6%) with their closest relatives and could be the potential novel taxa, the first time cultivated from leachate. Members of the six genera only have 2-5 representatives from past studies from other habitats but first time cultivated from leachate. In addition to bacteria, we also cultivated and characterized different groups of methanogenic archaea. Our chemistry data indicate that leachate is a highly stressed ecosystem with an assemblage of many toxic wastes like sulfur, zinc, mercury, chromium, etc. 16S rRNA gene-based amplicon analysis showed the dominance of (30-55%) methanogens and haloarachaea. Our data suggest that archaea are the significant regulators of leachate ecology, and more in-depth studies with multiple leachate samples are required to understand their role in leachate nutrient cycling and the development of effective leachate treatment technology.


Assuntos
Euryarchaeota , Eliminação de Resíduos , Poluentes Químicos da Água , Archaea/genética , Poluentes Químicos da Água/análise , RNA Ribossômico 16S/genética , Eliminação de Resíduos/métodos , Ecossistema , Bactérias/genética
4.
Microbes Infect ; 23(9-10): 104847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34116163

RESUMO

Facultative anaerobes are the most common cause of infections in anoxic parts of the human body, including deep wound, vagina, periodontal pockets, gastrointestinal tract, genitourinary tract and lungs. Generally, antibiotic susceptibility tests (AST) for facultative anaerobes are performed under aerobic conditions due to ease of handling and rapid growth. However, variation in susceptibility of facultative anaerobes to antibiotics under aerobic and anaerobic conditions can lead to failure of antibiotic treatment. Our study evaluated the susceptibility of facultative anaerobic microorganisms to antibiotics during growth under anaerobic or aerobic conditions. We compared the resistance patterns of representatives from 15 bacterial genera isolated from the human-gastrointestinal tract against 22 different antibiotics from six classes under aerobic and anaerobic conditions. Preliminary results obtained by a disc diffusion method were verified using minimum inhibitory concentration (MIC) testing. The results demonstrated that 7-strains had a similar pattern of drug resistance under both conditions, while the remaining ten strains had significant differences in resistance patterns between aerobic and anaerobic conditions for at least one antibiotic. We conclude that successful antibiotic therapy for host-associated pathogens requires proper assessment of the oxygen condition of the growth environment and MIC testing of each pathogen under anaerobic and aerobic conditions.


Assuntos
Bactérias Anaeróbias , Infecções Bacterianas , Anaerobiose , Antibacterianos/farmacologia , Bactérias , Infecções Bacterianas/microbiologia , Feminino , Humanos , Testes de Sensibilidade Microbiana
5.
Indian J Microbiol ; 59(3): 261-265, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31388202

RESUMO

In current study, we performed a comparative study on bacterial load, total coliform counts and type of organisms present in pre- and post-treated wastewater samples from municipal wastewater treatment plant of Pune, India. In addition, we also studied the antibiotic resistance profiling and role of the selected treatment plant in spread of antibiotic resistance in the environment. Data showed that total 30 different bacterial species from 18-different genera were present in untreated wastewater while only 9 species from 6-different genera were present in post-treated effluent. Furthermore, pre-treated wastewater sample contains wide range of organisms with high levels of antibiotic resistance while bacterial load reduced drastically and pathogens were absent from post-treated effluent.

6.
BMC Genomics ; 19(1): 652, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180794

RESUMO

BACKGROUND: Enterococcus faecium though commensal in the human gut, few strains provide a beneficial effect to humans as probiotics while few are responsible for the nosocomial infection. Comparative genomics of E. faecium can decipher the genomic differences responsible for probiotic, pathogenic and non-pathogenic properties. In this study, we compared E. faecium strain 17OM39 with a marketed probiotic, non-pathogenic non-probiotic (NPNP) and pathogenic strains. RESULTS: E. faecium 17OM39 was found to be closely related with marketed probiotic strain T110 based on core genome analysis. Strain 17OM39 was devoid of known vancomycin, tetracycline resistance and functional virulence genes. Moreover, E. faecium 17OM39 genome was found to be more stable due to the absence of frequently found transposable elements. Genes imparting beneficial functional properties were observed to be present in marketed probiotic T110 and 17OM39 strains. Genes associated with colonization and survival within gastrointestinal tract was also detected across all the strains. CONCLUSIONS: Beyond shared genetic features; this study particularly identified genes that are responsible for imparting probiotic, non-pathogenic and pathogenic features to the strains of E. faecium. Higher genomic stability, absence of known virulence factors and antibiotic resistance genes and close genomic relatedness with marketed probiotics makes E. faecium 17OM39 a potential probiotic candidate. The work presented here demonstrates that comparative genome analyses can be applied to large numbers of genomes, to find potential probiotic candidates.


Assuntos
Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos , Enterococcus faecium/genética , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Probióticos , Virulência/efeitos dos fármacos , Antibacterianos/farmacologia , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Trato Gastrointestinal/microbiologia , Genômica , Humanos , Fatores de Virulência
7.
Funct Integr Genomics ; 18(4): 385-399, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29556852

RESUMO

The human gut microbiome plays a crucial role in human health and efforts need to be done for cultivation and characterisation of bacteria with potential health benefits. Here, we isolated a bacterium from a healthy Indian adult faeces and investigated its potential as probiotic. The cultured bacterial strain 17OM39 was identified as Enterococcus faecium by 16S rRNA gene sequencing. The strain 17OM39 exhibited tolerance to acidic pH, showed antimicrobial activity and displayed strong cell surface traits such as hydrophobicity and autoaggregation capacity. The strain was able to tolerate bile salts and showed bile salt hydrolytic (BSH) activity, exopolysaccharide production and adherence to human HT-29 cell line. Importantly, partial haemolytic activity was detected and the strain was susceptible to the human serum. Genomics investigation of strain 17OM39 revealed the presence of diverse genes encoding for proteolytic enzymes, stress response systems and the ability to produce essential amino acids, vitamins and antimicrobial compound Bacteriocin-A. No virulence factors and plasmids were found in this genome of the strain 17OM39. Collectively, these physiological and genomic features of 17OM39 confirm the potential of this strain as a candidate probiotic.


Assuntos
Enterococcus faecium/genética , Genoma Bacteriano , Adulto , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/metabolismo , Fezes/microbiologia , Células HT29 , Hemólise , Humanos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Polissacarídeos Bacterianos/metabolismo , Probióticos/isolamento & purificação , Probióticos/metabolismo , RNA Ribossômico 16S/genética , Tolerância ao Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...